Update app.py
Browse files
app.py
CHANGED
@@ -2,37 +2,52 @@ import gradio as gr
|
|
2 |
import spaces
|
3 |
import torch
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
5 |
|
6 |
model_name = "dasomaru/gemma-3-4bit-it-demo"
|
7 |
|
8 |
-
# ๐ tokenizer๋ CPU์์๋ ๋ฏธ๋ฆฌ ๋ถ๋ฌ์ฌ ์ ์์
|
9 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
10 |
-
# ๐ model์ CPU๋ก๋ง ๋จผ์ ์ฌ๋ฆผ (GPU ์์ง ์์)
|
11 |
-
model = AutoModelForCausalLM.from_pretrained(
|
12 |
-
model_name,
|
13 |
-
torch_dtype=torch.float16, # 4bit model์ด๋๊น
|
14 |
-
trust_remote_code=True,
|
15 |
-
)
|
16 |
-
|
17 |
@spaces.GPU(duration=300)
|
18 |
-
def generate_response(
|
19 |
-
# ๋ชจ๋ธ ๋ฐ ํ ํฌ๋์ด์
|
20 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
21 |
-
model = AutoModelForCausalLM.from_pretrained(
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
25 |
-
outputs = model.generate(
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
30 |
|
|
|
31 |
demo = gr.Interface(fn=generate_response, inputs="text", outputs="text")
|
32 |
demo.launch()
|
33 |
|
34 |
-
|
35 |
-
|
36 |
# zero = torch.Tensor([0]).cuda()
|
37 |
# print(zero.device) # <-- 'cpu' ๐ค
|
38 |
|
|
|
2 |
import spaces
|
3 |
import torch
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
+
from retriever.vectordb_rerank import search_documents # ๐ง RAG ๊ฒ์๊ธฐ ๋ถ๋ฌ์ค๊ธฐ
|
6 |
|
7 |
model_name = "dasomaru/gemma-3-4bit-it-demo"
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
@spaces.GPU(duration=300)
|
10 |
+
def generate_response(query):
|
11 |
+
# ๋ชจ๋ธ ๋ฐ ํ ํฌ๋์ด์ ๋ก๋ (ZeroGPU ์์ฝ ํ)
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
13 |
+
model = AutoModelForCausalLM.from_pretrained(
|
14 |
+
model_name,
|
15 |
+
torch_dtype=torch.float16,
|
16 |
+
trust_remote_code=True,
|
17 |
+
).to("cuda")
|
18 |
+
|
19 |
+
# 1. ๊ฒ์
|
20 |
+
top_k = 5
|
21 |
+
retrieved_docs = search_documents(query, top_k=top_k)
|
22 |
+
|
23 |
+
# 2. ํ๋กฌํํธ ์กฐ๋ฆฝ
|
24 |
+
prompt = (
|
25 |
+
"๋น์ ์ ๊ณต์ธ์ค๊ฐ์ฌ ์ํ ๋ฌธ์ ์ถ์ ์ ๋ฌธ๊ฐ์
๋๋ค.\n\n"
|
26 |
+
"๋ค์์ ๊ธฐ์ถ ๋ฌธ์ ๋ฐ ๊ด๋ จ ๋ฒ๋ น ์ ๋ณด์
๋๋ค:\n"
|
27 |
+
)
|
28 |
+
for idx, doc in enumerate(retrieved_docs, 1):
|
29 |
+
prompt += f"- {doc}\n"
|
30 |
+
prompt += f"\n์ด ์ ๋ณด๋ฅผ ์ฐธ๊ณ ํ์ฌ ์ฌ์ฉ์์ ์์ฒญ์ ๋ต๋ณํด ์ฃผ์ธ์.\n\n"
|
31 |
+
prompt += f"[์ง๋ฌธ]\n{query}\n\n[๋ต๋ณ]\n"
|
32 |
+
|
33 |
+
# 3. ๋ต๋ณ ์์ฑ
|
34 |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
35 |
+
outputs = model.generate(
|
36 |
+
**inputs,
|
37 |
+
max_new_tokens=512,
|
38 |
+
temperature=0.7,
|
39 |
+
top_p=0.9,
|
40 |
+
top_k=50,
|
41 |
+
do_sample=True,
|
42 |
+
)
|
43 |
+
|
44 |
+
# 4. ๊ฒฐ๊ณผ ๋ฐํ
|
45 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
46 |
|
47 |
+
# Gradio ์ฑ
|
48 |
demo = gr.Interface(fn=generate_response, inputs="text", outputs="text")
|
49 |
demo.launch()
|
50 |
|
|
|
|
|
51 |
# zero = torch.Tensor([0]).cuda()
|
52 |
# print(zero.device) # <-- 'cpu' ๐ค
|
53 |
|