Update app.py
Browse files
app.py
CHANGED
@@ -5,39 +5,41 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
5 |
|
6 |
model_name = "dasomaru/gemma-3-4bit-it-demo"
|
7 |
|
8 |
-
# ๐
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
|
|
10 |
model = AutoModelForCausalLM.from_pretrained(
|
11 |
model_name,
|
12 |
-
torch_dtype=torch.float16,
|
13 |
trust_remote_code=True,
|
14 |
)
|
15 |
|
16 |
@spaces.GPU(duration=300)
|
17 |
def generate_response(prompt):
|
18 |
# ๋ชจ๋ธ ๋ฐ ํ ํฌ๋์ด์ ๋ก๋ฉ์ ํจ์ ๋ด๋ถ์์ ์ํ
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
model_name,
|
24 |
-
torch_dtype=torch.float16,
|
25 |
-
trust_remote_code=True,
|
26 |
-
)
|
27 |
-
model.to("cuda")
|
28 |
-
|
29 |
-
# inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
30 |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
31 |
-
outputs = model.generate(
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
top_p=0.9,
|
36 |
-
top_k=50,
|
37 |
-
do_sample=True,
|
38 |
-
)
|
39 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
40 |
|
41 |
demo = gr.Interface(fn=generate_response, inputs="text", outputs="text")
|
42 |
demo.launch()
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
model_name = "dasomaru/gemma-3-4bit-it-demo"
|
7 |
|
8 |
+
# ๐ tokenizer๋ CPU์์๋ ๋ฏธ๋ฆฌ ๋ถ๋ฌ์ฌ ์ ์์
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
10 |
+
# ๐ model์ CPU๋ก๋ง ๋จผ์ ์ฌ๋ฆผ (GPU ์์ง ์์)
|
11 |
model = AutoModelForCausalLM.from_pretrained(
|
12 |
model_name,
|
13 |
+
torch_dtype=torch.float16, # 4bit model์ด๋๊น
|
14 |
trust_remote_code=True,
|
15 |
)
|
16 |
|
17 |
@spaces.GPU(duration=300)
|
18 |
def generate_response(prompt):
|
19 |
# ๋ชจ๋ธ ๋ฐ ํ ํฌ๋์ด์ ๋ก๋ฉ์ ํจ์ ๋ด๋ถ์์ ์ํ
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained("dasomaru/gemma-3-4bit-it-demo")
|
21 |
+
model = AutoModelForCausalLM.from_pretrained("dasomaru/gemma-3-4bit-it-demo")
|
22 |
+
model.to("cuda")
|
23 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
25 |
+
outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.7,
|
26 |
+
top_p=0.9,
|
27 |
+
top_k=50,
|
28 |
+
do_sample=True,)
|
|
|
|
|
|
|
|
|
29 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
30 |
|
31 |
demo = gr.Interface(fn=generate_response, inputs="text", outputs="text")
|
32 |
demo.launch()
|
33 |
|
34 |
+
|
35 |
+
|
36 |
+
# zero = torch.Tensor([0]).cuda()
|
37 |
+
# print(zero.device) # <-- 'cpu' ๐ค
|
38 |
+
|
39 |
+
# @spaces.GPU
|
40 |
+
# def greet(n):
|
41 |
+
# print(zero.device) # <-- 'cuda:0' ๐ค
|
42 |
+
# return f"Hello {zero + n} Tensor"
|
43 |
+
|
44 |
+
# demo = gr.Interface(fn=greet, inputs=gr.Number(), outputs=gr.Text())
|
45 |
+
# demo.launch()
|