Update app.py
Browse files
app.py
CHANGED
@@ -2,20 +2,21 @@ import gradio as gr
|
|
2 |
import spaces
|
3 |
import torch
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
-
from retriever.
|
6 |
|
7 |
model_name = "dasomaru/gemma-3-4bit-it-demo"
|
8 |
|
9 |
@spaces.GPU(duration=300)
|
10 |
def generate_response(query):
|
11 |
-
#
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
13 |
model = AutoModelForCausalLM.from_pretrained(
|
14 |
model_name,
|
15 |
torch_dtype=torch.float16,
|
|
|
16 |
trust_remote_code=True,
|
17 |
-
)
|
18 |
-
|
19 |
# 1. ๊ฒ์
|
20 |
top_k = 5
|
21 |
retrieved_docs = search_documents(query, top_k=top_k)
|
@@ -31,7 +32,7 @@ def generate_response(query):
|
|
31 |
prompt += f"[์ง๋ฌธ]\n{query}\n\n[๋ต๋ณ]\n"
|
32 |
|
33 |
# 3. ๋ต๋ณ ์์ฑ
|
34 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(
|
35 |
outputs = model.generate(
|
36 |
**inputs,
|
37 |
max_new_tokens=512,
|
@@ -41,20 +42,7 @@ def generate_response(query):
|
|
41 |
do_sample=True,
|
42 |
)
|
43 |
|
44 |
-
# 4. ๊ฒฐ๊ณผ ๋ฐํ
|
45 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
46 |
|
47 |
-
# Gradio ์ฑ
|
48 |
demo = gr.Interface(fn=generate_response, inputs="text", outputs="text")
|
49 |
demo.launch()
|
50 |
-
|
51 |
-
# zero = torch.Tensor([0]).cuda()
|
52 |
-
# print(zero.device) # <-- 'cpu' ๐ค
|
53 |
-
|
54 |
-
# @spaces.GPU
|
55 |
-
# def greet(n):
|
56 |
-
# print(zero.device) # <-- 'cuda:0' ๐ค
|
57 |
-
# return f"Hello {zero + n} Tensor"
|
58 |
-
|
59 |
-
# demo = gr.Interface(fn=greet, inputs=gr.Number(), outputs=gr.Text())
|
60 |
-
# demo.launch()
|
|
|
2 |
import spaces
|
3 |
import torch
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
+
from retriever.vectordb import search_documents # ๐ง RAG ๊ฒ์๊ธฐ ๋ถ๋ฌ์ค๊ธฐ
|
6 |
|
7 |
model_name = "dasomaru/gemma-3-4bit-it-demo"
|
8 |
|
9 |
@spaces.GPU(duration=300)
|
10 |
def generate_response(query):
|
11 |
+
# ๐ generate_response ํจ์ ์์์ ๋งค๋ฒ ๋ก๋
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
13 |
model = AutoModelForCausalLM.from_pretrained(
|
14 |
model_name,
|
15 |
torch_dtype=torch.float16,
|
16 |
+
device_map="auto", # โ
์ค์: ์๋์ผ๋ก GPU ํ ๋น
|
17 |
trust_remote_code=True,
|
18 |
+
)
|
19 |
+
|
20 |
# 1. ๊ฒ์
|
21 |
top_k = 5
|
22 |
retrieved_docs = search_documents(query, top_k=top_k)
|
|
|
32 |
prompt += f"[์ง๋ฌธ]\n{query}\n\n[๋ต๋ณ]\n"
|
33 |
|
34 |
# 3. ๋ต๋ณ ์์ฑ
|
35 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) # โ
model.device
|
36 |
outputs = model.generate(
|
37 |
**inputs,
|
38 |
max_new_tokens=512,
|
|
|
42 |
do_sample=True,
|
43 |
)
|
44 |
|
|
|
45 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
46 |
|
|
|
47 |
demo = gr.Interface(fn=generate_response, inputs="text", outputs="text")
|
48 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|