Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,156 +1,187 @@
|
|
1 |
-
# β
|
2 |
-
#
|
3 |
|
4 |
import os
|
5 |
import json
|
6 |
-
import
|
7 |
-
import fitz
|
8 |
import nltk
|
9 |
import chromadb
|
|
|
|
|
10 |
import pytesseract
|
11 |
-
import
|
12 |
-
import torch
|
13 |
from PIL import Image
|
14 |
from tqdm import tqdm
|
15 |
from nltk.tokenize import sent_tokenize
|
16 |
from sentence_transformers import SentenceTransformer, util
|
17 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
18 |
-
import gradio as gr
|
19 |
|
20 |
-
#
|
21 |
-
# π§
|
22 |
-
#
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
26 |
MAX_CONTEXT_CHUNKS = 3
|
27 |
-
CHUNK_SIZE = 750
|
28 |
-
CHUNK_OVERLAP = 100
|
29 |
-
MODEL_OPTIONS = [
|
30 |
-
"meta-llama/Llama-3.1-8B-Instruct",
|
31 |
-
"meta-llama/Llama-4-Scout-17B-16E-Instruct",
|
32 |
-
"google/gemma-1.1-7b-it",
|
33 |
-
"Qwen/Qwen1.5-14B-Chat",
|
34 |
-
"mistralai/Mistral-7B-Instruct-v0.3"
|
35 |
-
]
|
36 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
# ----------------------
|
47 |
-
# π Utility Functions
|
48 |
-
# ----------------------
|
49 |
-
def extract_text_or_ocr(page):
|
50 |
-
text = page.get_text().strip()
|
51 |
-
if text:
|
52 |
-
return text, False
|
53 |
-
pix = page.get_pixmap(dpi=300)
|
54 |
-
img_data = pix.tobytes("png")
|
55 |
-
img = Image.open(io.BytesIO(img_data))
|
56 |
-
return pytesseract.image_to_string(img).strip(), True
|
57 |
|
|
|
|
|
|
|
58 |
def clean_text(text):
|
59 |
return "\n".join([line.strip() for line in text.splitlines() if line.strip()])
|
60 |
|
61 |
def tokenize_sentences(text):
|
|
|
62 |
return sent_tokenize(text)
|
63 |
|
64 |
-
def
|
65 |
-
chunks,
|
66 |
for sentence in sentences:
|
67 |
-
|
68 |
-
if
|
69 |
-
chunks.append(" ".join(
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
if
|
|
|
75 |
return chunks
|
76 |
|
77 |
-
def
|
78 |
name = filename.lower().replace("_", " ").replace("-", " ")
|
79 |
meta = {"model": "unknown", "doc_type": "unknown", "brand": "life fitness"}
|
80 |
-
if "om" in name
|
81 |
-
elif "sm" in name
|
82 |
elif "assembly" in name: meta["doc_type"] = "assembly instructions"
|
83 |
elif "alert" in name: meta["doc_type"] = "installer alert"
|
84 |
elif "parts" in name: meta["doc_type"] = "parts manual"
|
85 |
-
|
86 |
-
for
|
87 |
-
if
|
|
|
88 |
return meta
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
# ----------------------
|
101 |
-
def embed_pdfs():
|
102 |
-
os.makedirs(CHROMA_PATH, exist_ok=True)
|
103 |
-
client = chromadb.PersistentClient(path=CHROMA_PATH)
|
104 |
-
if COLLECTION_NAME in [c.name for c in client.list_collections()]:
|
105 |
-
client.delete_collection(COLLECTION_NAME)
|
106 |
-
collection = client.create_collection(COLLECTION_NAME)
|
107 |
-
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
sents = tokenize_sentences(clean_text(text))
|
117 |
-
chunks =
|
118 |
for i, chunk in enumerate(chunks):
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
return collection, embedder
|
128 |
|
129 |
-
#
|
130 |
-
#
|
131 |
-
#
|
132 |
-
def
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
return pipe
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
with gr.Row():
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
|
|
|
|
|
1 |
+
# β
app.py (SmartManuals-AI)
|
2 |
+
# Hugging Face Space-ready app with multi-model support, PDF upload, and live progress feedback
|
3 |
|
4 |
import os
|
5 |
import json
|
6 |
+
import fitz # PyMuPDF
|
|
|
7 |
import nltk
|
8 |
import chromadb
|
9 |
+
import tempfile
|
10 |
+
import shutil
|
11 |
import pytesseract
|
12 |
+
import gradio as gr
|
|
|
13 |
from PIL import Image
|
14 |
from tqdm import tqdm
|
15 |
from nltk.tokenize import sent_tokenize
|
16 |
from sentence_transformers import SentenceTransformer, util
|
17 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
|
18 |
|
19 |
+
# ---------------------------
|
20 |
+
# π§ CONFIG
|
21 |
+
# ---------------------------
|
22 |
+
pdf_folder = "Manuals"
|
23 |
+
output_jsonl_chunks = "chunks.jsonl"
|
24 |
+
chroma_path = "./chroma_store"
|
25 |
+
collection_name = "manual_chunks"
|
26 |
+
chunk_size = 750
|
27 |
+
chunk_overlap = 100
|
28 |
MAX_CONTEXT_CHUNKS = 3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
30 |
|
31 |
+
MODEL_MAP = {
|
32 |
+
"LLaMA 3 (8B)": "meta-llama/Meta-Llama-3-8B-Instruct",
|
33 |
+
"LLaMA 4 Scout (17B)": "meta-llama/Meta-Llama-4-Scout-17B-16E-Instruct",
|
34 |
+
"Gemma 3 (27B)": "google/gemma-3-27b-it",
|
35 |
+
"Mistral 7B": "mistralai/Mistral-7B-Instruct-v0.3",
|
36 |
+
"Qwen3 (30B)": "Qwen/Qwen3-30B-A3B"
|
37 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
# ---------------------------
|
40 |
+
# π₯ UTILITIES
|
41 |
+
# ---------------------------
|
42 |
def clean_text(text):
|
43 |
return "\n".join([line.strip() for line in text.splitlines() if line.strip()])
|
44 |
|
45 |
def tokenize_sentences(text):
|
46 |
+
nltk.download('punkt', quiet=True)
|
47 |
return sent_tokenize(text)
|
48 |
|
49 |
+
def split_into_chunks(sentences, max_tokens=750, overlap=100):
|
50 |
+
chunks, current_chunk, current_len = [], [], 0
|
51 |
for sentence in sentences:
|
52 |
+
token_count = len(sentence.split())
|
53 |
+
if current_len + token_count > max_tokens and current_chunk:
|
54 |
+
chunks.append(" ".join(current_chunk))
|
55 |
+
current_chunk = current_chunk[-overlap:]
|
56 |
+
current_len = sum(len(s.split()) for s in current_chunk)
|
57 |
+
current_chunk.append(sentence)
|
58 |
+
current_len += token_count
|
59 |
+
if current_chunk:
|
60 |
+
chunks.append(" ".join(current_chunk))
|
61 |
return chunks
|
62 |
|
63 |
+
def extract_metadata_from_filename(filename):
|
64 |
name = filename.lower().replace("_", " ").replace("-", " ")
|
65 |
meta = {"model": "unknown", "doc_type": "unknown", "brand": "life fitness"}
|
66 |
+
if "om" in name: meta["doc_type"] = "owner manual"
|
67 |
+
elif "sm" in name: meta["doc_type"] = "service manual"
|
68 |
elif "assembly" in name: meta["doc_type"] = "assembly instructions"
|
69 |
elif "alert" in name: meta["doc_type"] = "installer alert"
|
70 |
elif "parts" in name: meta["doc_type"] = "parts manual"
|
71 |
+
known_models = ["se3hd", "se3", "se4", "symbio", "explore", "integrity x", "integrity sl", "everest", "engage"]
|
72 |
+
for model in known_models:
|
73 |
+
if model.replace(" ", "") in name.replace(" ", ""):
|
74 |
+
meta["model"] = model
|
75 |
return meta
|
76 |
|
77 |
+
def extract_text_with_ocr(page):
|
78 |
+
text = page.get_text().strip()
|
79 |
+
if text:
|
80 |
+
return text
|
81 |
+
pix = page.get_pixmap(dpi=300)
|
82 |
+
img_data = pix.tobytes("png")
|
83 |
+
img = Image.open(tempfile.SpooledTemporaryFile())
|
84 |
+
img.fp.write(img_data)
|
85 |
+
img.fp.seek(0)
|
86 |
+
return pytesseract.image_to_string(img).strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
# ---------------------------
|
89 |
+
# π§ EMBEDDING + CHROMA
|
90 |
+
# ---------------------------
|
91 |
+
def embed_pdfs_from_uploaded(files, progress=gr.Progress(track_tqdm=True)):
|
92 |
+
os.makedirs(pdf_folder, exist_ok=True)
|
93 |
+
temp_chunks = []
|
94 |
+
for file in files:
|
95 |
+
filename = os.path.basename(file.name)
|
96 |
+
dst = os.path.join(pdf_folder, filename)
|
97 |
+
shutil.copy(file.name, dst)
|
98 |
+
doc = fitz.open(dst)
|
99 |
+
meta = extract_metadata_from_filename(filename)
|
100 |
+
for page_num, page in enumerate(doc, start=1):
|
101 |
+
text = extract_text_with_ocr(page)
|
102 |
sents = tokenize_sentences(clean_text(text))
|
103 |
+
chunks = split_into_chunks(sents, chunk_size, chunk_overlap)
|
104 |
for i, chunk in enumerate(chunks):
|
105 |
+
temp_chunks.append({
|
106 |
+
"chunk_id": f"{filename}::page_{page_num}::chunk_{i+1}",
|
107 |
+
"source_file": filename,
|
108 |
+
"page": page_num,
|
109 |
+
"text": chunk,
|
110 |
+
**meta
|
111 |
+
})
|
112 |
+
|
113 |
+
with open(output_jsonl_chunks, "w", encoding="utf-8") as f:
|
114 |
+
for c in temp_chunks:
|
115 |
+
json.dump(c, f)
|
116 |
+
f.write("\n")
|
117 |
+
|
118 |
+
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
119 |
+
client = chromadb.PersistentClient(path=chroma_path)
|
120 |
+
if collection_name in [c.name for c in client.list_collections()]:
|
121 |
+
client.delete_collection(collection_name)
|
122 |
+
collection = client.create_collection(collection_name)
|
123 |
+
|
124 |
+
for i in tqdm(range(0, len(temp_chunks), 16)):
|
125 |
+
batch = temp_chunks[i:i+16]
|
126 |
+
texts = [b["text"] for b in batch]
|
127 |
+
metadatas = [b for b in batch]
|
128 |
+
ids = [b["chunk_id"] for b in batch]
|
129 |
+
embeddings = embedder.encode(texts).tolist()
|
130 |
+
collection.add(documents=texts, ids=ids, metadatas=metadatas, embeddings=embeddings)
|
131 |
+
|
132 |
return collection, embedder
|
133 |
|
134 |
+
# ---------------------------
|
135 |
+
# π€ LLM INFERENCE
|
136 |
+
# ---------------------------
|
137 |
+
def load_llm(model_key):
|
138 |
+
model_id = MODEL_MAP.get(model_key)
|
139 |
+
if not model_id or not HF_TOKEN:
|
140 |
+
return None, None, None
|
141 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
|
142 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, token=HF_TOKEN, device_map="auto")
|
143 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=300)
|
144 |
+
return tokenizer, model, pipe
|
145 |
+
|
146 |
+
def generate_answer(pipe, tokenizer, context, query):
|
147 |
+
messages = [
|
148 |
+
{"role": "system", "content": "You are an expert manual assistant. Answer accurately using only the context."},
|
149 |
+
{"role": "user", "content": f"Context:\n{context}\n\nQuestion: {query}"}
|
150 |
+
]
|
151 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
152 |
+
output = pipe(prompt)[0]["generated_text"]
|
153 |
+
return output.split("\n")[-1].strip()
|
154 |
+
|
155 |
+
# ---------------------------
|
156 |
+
# π― FULL PIPELINE
|
157 |
+
# ---------------------------
|
158 |
+
def rag_pipeline(query, model_key, files):
|
159 |
+
collection, embedder = embed_pdfs_from_uploaded(files)
|
160 |
+
query_embedding = embedder.encode(query, convert_to_tensor=True)
|
161 |
+
results = collection.query(query_texts=[query], n_results=MAX_CONTEXT_CHUNKS)
|
162 |
+
if not results["documents"]:
|
163 |
+
return "No matches found."
|
164 |
+
|
165 |
+
context = "\n\n".join(results["documents"][0])
|
166 |
+
tokenizer, model, pipe = load_llm(model_key)
|
167 |
+
if pipe:
|
168 |
+
return generate_answer(pipe, tokenizer, context, query)
|
169 |
+
return "Model could not be loaded."
|
170 |
+
|
171 |
+
# ---------------------------
|
172 |
+
# π₯οΈ GRADIO UI
|
173 |
+
# ---------------------------
|
174 |
+
with gr.Blocks() as demo:
|
175 |
+
gr.Markdown("""# π§ SmartManuals-AI with Multi-Model RAG
|
176 |
+
Upload your PDF manuals and ask smart questions. Choose your preferred LLM.""")
|
177 |
with gr.Row():
|
178 |
+
file_upload = gr.File(file_types=[".pdf"], file_count="multiple", label="Upload Manuals")
|
179 |
+
with gr.Row():
|
180 |
+
query_box = gr.Textbox(label="Question")
|
181 |
+
model_selector = gr.Dropdown(label="Choose Model", choices=list(MODEL_MAP.keys()), value="LLaMA 3 (8B)")
|
182 |
+
submit_btn = gr.Button("Run Query")
|
183 |
+
answer_box = gr.Textbox(label="Answer", lines=8)
|
184 |
+
|
185 |
+
submit_btn.click(fn=rag_pipeline, inputs=[query_box, model_selector, file_upload], outputs=[answer_box])
|
186 |
+
|
187 |
+
demo.launch()
|