Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,612 +1,156 @@
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import json
|
3 |
-
import
|
|
|
4 |
import nltk
|
5 |
import chromadb
|
|
|
|
|
|
|
|
|
6 |
from tqdm import tqdm
|
7 |
from nltk.tokenize import sent_tokenize
|
8 |
from sentence_transformers import SentenceTransformer, util
|
9 |
-
import numpy as np
|
10 |
-
import torch
|
11 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
12 |
-
import pytesseract
|
13 |
-
from PIL import Image
|
14 |
-
import io
|
15 |
import gradio as gr
|
16 |
|
17 |
-
#
|
18 |
-
#
|
19 |
-
#
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
#
|
36 |
-
#
|
|
|
37 |
try:
|
38 |
nltk.data.find('tokenizers/punkt')
|
39 |
-
except nltk.downloader.DownloadError:
|
40 |
-
nltk.download('punkt')
|
41 |
except LookupError:
|
42 |
nltk.download('punkt')
|
43 |
|
44 |
-
#
|
45 |
-
# 📄 Utility
|
46 |
-
#
|
47 |
-
|
48 |
-
def extract_text_from_page_with_ocr(page):
|
49 |
text = page.get_text().strip()
|
50 |
if text:
|
51 |
-
return text, False
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
# If native text is missing, try OCR
|
54 |
-
try:
|
55 |
-
pix = page.get_pixmap(dpi=300)
|
56 |
-
img_data = pix.tobytes("png")
|
57 |
-
img = Image.open(io.BytesIO(img_data))
|
58 |
-
ocr_text = pytesseract.image_to_string(img).strip()
|
59 |
-
return ocr_text, True
|
60 |
-
except Exception as e:
|
61 |
-
print(f"OCR failed for a page: {e}")
|
62 |
-
return "", False # Return empty and indicate OCR was not used if it fails
|
63 |
-
|
64 |
-
|
65 |
-
# ---------------------------
|
66 |
-
# 🧹 Clean up lines (from original notebook)
|
67 |
-
# ---------------------------
|
68 |
def clean_text(text):
|
69 |
-
|
70 |
-
lines = [line.strip() for line in lines if line.strip()]
|
71 |
-
return "\n".join(lines)
|
72 |
|
73 |
-
# ---------------------------
|
74 |
-
# ✂️ Sentence Tokenizer (from original notebook)
|
75 |
-
# ---------------------------
|
76 |
def tokenize_sentences(text):
|
77 |
return sent_tokenize(text)
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
# ---------------------------
|
82 |
-
def split_into_chunks(sentences, max_tokens=750, overlap=100):
|
83 |
-
chunks = []
|
84 |
-
current_chunk = []
|
85 |
-
current_len = 0
|
86 |
-
|
87 |
for sentence in sentences:
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
current_len = sum(len(s.split()) for s in current_chunk)
|
97 |
-
|
98 |
-
# Add the current sentence and update length
|
99 |
-
current_chunk.append(sentence)
|
100 |
-
current_len += token_count
|
101 |
-
|
102 |
-
# Add the last chunk if it's not empty
|
103 |
-
if current_chunk:
|
104 |
-
chunks.append(" ".join(current_chunk))
|
105 |
-
|
106 |
return chunks
|
107 |
|
108 |
-
|
109 |
-
# ---------------------------
|
110 |
-
# 🧠 Extract Metadata from Filename (from original notebook)
|
111 |
-
# ---------------------------
|
112 |
-
def extract_metadata_from_filename(filename):
|
113 |
name = filename.lower().replace("_", " ").replace("-", " ")
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
for
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
print("Starting page chunking...")
|
193 |
-
all_chunks = []
|
194 |
-
if not os.path.exists(input_jsonl):
|
195 |
-
print(f"Error: Input JSONL file not found at {input_jsonl}. Run PDF processing first.")
|
196 |
-
return []
|
197 |
-
|
198 |
-
try:
|
199 |
-
with open(input_jsonl, "r", encoding="utf-8") as f:
|
200 |
-
# Count lines for tqdm progress bar
|
201 |
-
total_lines = sum(1 for _ in f)
|
202 |
-
f.seek(0) # Reset file pointer to the beginning
|
203 |
-
|
204 |
-
for line in tqdm(f, total=total_lines, desc="Chunking pages"):
|
205 |
-
try:
|
206 |
-
page = json.loads(line)
|
207 |
-
source_file = page["source_file"]
|
208 |
-
page_number = page["page"]
|
209 |
-
text = page["text"]
|
210 |
-
|
211 |
-
metadata = extract_metadata_from_filename(source_file)
|
212 |
-
sentences = tokenize_sentences(clean_text(text)) # Clean and tokenize the page text
|
213 |
-
chunks = split_into_chunks(sentences, max_tokens=chunk_size, overlap=chunk_overlap)
|
214 |
-
|
215 |
-
for i, chunk in enumerate(chunks):
|
216 |
-
# Ensure chunk text is not empty
|
217 |
-
if chunk.strip():
|
218 |
-
all_chunks.append({
|
219 |
-
"source_file": source_file,
|
220 |
-
"chunk_id": f"{source_file}::page_{page_number}::chunk_{i+1}",
|
221 |
-
"page": page_number,
|
222 |
-
"ocr_used": page.get("ocr_used", False), # Use .get for safety
|
223 |
-
"model": metadata.get("model", "unknown"),
|
224 |
-
"doc_type": metadata.get("doc_type", "unknown"),
|
225 |
-
"brand": metadata.get("brand", "life fitness"),
|
226 |
-
"text": chunk.strip() # Ensure no leading/trailing whitespace
|
227 |
-
})
|
228 |
-
except json.JSONDecodeError:
|
229 |
-
print(f"Skipping invalid JSON line: {line}")
|
230 |
-
except Exception as e:
|
231 |
-
print(f"Error processing page from {line}: {e}")
|
232 |
-
continue # Continue with the next line
|
233 |
-
|
234 |
-
except Exception as e:
|
235 |
-
print(f"Error opening or reading input JSONL file: {e}")
|
236 |
-
return []
|
237 |
-
|
238 |
-
|
239 |
-
if not all_chunks:
|
240 |
-
print("No chunks were created.")
|
241 |
-
|
242 |
-
with open(output_jsonl, "w", encoding="utf-8") as f:
|
243 |
-
for chunk in all_chunks:
|
244 |
-
json.dump(chunk, f)
|
245 |
-
f.write("\n")
|
246 |
-
|
247 |
-
print(f"✅ Done! {len(all_chunks)} chunks saved to {output_jsonl}")
|
248 |
-
return all_chunks # Return the list of chunks
|
249 |
-
|
250 |
-
# ---------------------------
|
251 |
-
# 🚀 Step 3: Embed Chunks into Chroma
|
252 |
-
# ---------------------------
|
253 |
-
def embed_chunks_into_chroma(jsonl_path, chroma_path, collection_name):
|
254 |
-
print("Starting ChromaDB embedding...")
|
255 |
-
try:
|
256 |
-
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
257 |
-
embedder.eval()
|
258 |
-
print("✅ SentenceTransformer model loaded.")
|
259 |
-
except Exception as e:
|
260 |
-
print(f"❌ Error loading SentenceTransformer model: {e}")
|
261 |
-
return None, "Error loading SentenceTransformer model."
|
262 |
-
|
263 |
-
try:
|
264 |
-
# Use a persistent client
|
265 |
-
client = chromadb.PersistentClient(path=chroma_path)
|
266 |
-
# Check if collection exists and delete if it does to rebuild
|
267 |
-
try:
|
268 |
-
client.get_collection(name=collection_name)
|
269 |
-
client.delete_collection(collection_name)
|
270 |
-
print(f"Deleted existing collection: {collection_name}")
|
271 |
-
except Exception: # Collection does not exist, which is fine
|
272 |
-
pass
|
273 |
-
collection = client.create_collection(name=collection_name)
|
274 |
-
print(f"✅ ChromaDB collection '{collection_name}' created.")
|
275 |
-
except Exception as e:
|
276 |
-
print(f"❌ Error initializing ChromaDB: {e}")
|
277 |
-
return None, "Error initializing ChromaDB."
|
278 |
-
|
279 |
-
texts, metadatas, ids = [], [], []
|
280 |
-
batch_size = 16 # Define batch size for embedding
|
281 |
-
|
282 |
-
if not os.path.exists(jsonl_path):
|
283 |
-
print(f"Error: Input JSONL file not found at {jsonl_path}. Run chunking first.")
|
284 |
-
return None, "Input chunk file not found."
|
285 |
-
|
286 |
-
try:
|
287 |
-
with open(jsonl_path, "r", encoding="utf-8") as f:
|
288 |
-
# Count lines for tqdm progress bar
|
289 |
-
total_lines = sum(1 for _ in f)
|
290 |
-
f.seek(0) # Reset file pointer to the beginning
|
291 |
-
|
292 |
-
for line in tqdm(f, total=total_lines, desc="Embedding chunks"):
|
293 |
-
try:
|
294 |
-
item = json.loads(line)
|
295 |
-
texts.append(item.get("text", "")) # Use .get for safety
|
296 |
-
ids.append(item.get("chunk_id", f"unknown_{len(ids)}")) # Ensure chunk_id exists
|
297 |
-
# Prepare metadata, ensuring all keys are strings and handling potential missing keys
|
298 |
-
metadata = {str(k): str(v) for k, v in item.items() if k != "text"}
|
299 |
-
metadatas.append(metadata)
|
300 |
-
|
301 |
-
if len(texts) >= batch_size:
|
302 |
-
embeddings = embedder.encode(texts).tolist()
|
303 |
-
collection.add(documents=texts, metadatas=metadatas, ids=ids, embeddings=embeddings)
|
304 |
-
texts, metadatas, ids = [], [], [] # Reset batches
|
305 |
-
|
306 |
-
except json.JSONDecodeError:
|
307 |
-
print(f"Skipping invalid JSON line during embedding: {line}")
|
308 |
-
except Exception as e:
|
309 |
-
print(f"Error processing chunk line {line} during embedding: {e}")
|
310 |
-
continue # Continue with the next line
|
311 |
-
|
312 |
-
# Add any remaining items in the last batch
|
313 |
-
if texts:
|
314 |
-
embeddings = embedder.encode(texts).tolist()
|
315 |
-
collection.add(documents=texts, metadatas=metadatas, ids=ids, embeddings=embeddings)
|
316 |
-
|
317 |
-
print("✅ All OCR-enhanced chunks embedded in Chroma!")
|
318 |
-
return collection, None # Return collection and no error
|
319 |
-
|
320 |
-
except Exception as e:
|
321 |
-
print(f"❌ Error reading input JSONL file for embedding: {e}")
|
322 |
-
return None, "Error reading input file for embedding."
|
323 |
-
|
324 |
-
|
325 |
-
# ---------------------------
|
326 |
-
# 🧠 Load Hugging Face Model and Tokenizer
|
327 |
-
# ---------------------------
|
328 |
-
# This needs to happen after imports but before the Gradio interface
|
329 |
-
tokenizer = None
|
330 |
-
model = None
|
331 |
-
pipe = None
|
332 |
-
|
333 |
-
print(f"Attempting to load Hugging Face model: {HF_MODEL_ID}")
|
334 |
-
print(f"Using HF_TOKEN (present: {HF_TOKEN is not None})")
|
335 |
-
|
336 |
-
if not HF_TOKEN:
|
337 |
-
print("❌ HF_TOKEN environment variable not set. Cannot load Hugging Face model.")
|
338 |
-
else:
|
339 |
-
try:
|
340 |
-
# Check if CUDA is available
|
341 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
342 |
-
print(f"Using device: {device}")
|
343 |
-
|
344 |
-
# Load tokenizer and model
|
345 |
-
tokenizer = AutoTokenizer.from_pretrained(HF_MODEL_ID, token=HF_TOKEN)
|
346 |
-
model = AutoModelForCausalLM.from_pretrained(
|
347 |
-
HF_MODEL_ID,
|
348 |
-
token=HF_TOKEN,
|
349 |
-
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32, # Use bfloat16 on GPU
|
350 |
-
device_map="auto" if torch.cuda.is_available() else None # Auto device mapping on GPU
|
351 |
-
).to(device) # Move model to selected device
|
352 |
-
|
353 |
-
# Create a pipeline for easy inference
|
354 |
-
pipe = pipeline(
|
355 |
-
"text-generation",
|
356 |
-
model=model,
|
357 |
-
tokenizer=tokenizer,
|
358 |
-
max_new_tokens=512,
|
359 |
-
temperature=0.1,
|
360 |
-
top_p=0.9,
|
361 |
-
do_sample=True,
|
362 |
-
device=0 if torch.cuda.is_available() else -1 # Specify device for pipeline
|
363 |
-
)
|
364 |
-
|
365 |
-
print(f"✅ Successfully loaded Hugging Face model: {HF_MODEL_ID} on {device}")
|
366 |
-
|
367 |
-
except Exception as e:
|
368 |
-
print(f"❌ Error loading Hugging Face model: {e}")
|
369 |
-
print("Please ensure:")
|
370 |
-
print("- The HF_TOKEN secret is set in your Hugging Face Space settings.")
|
371 |
-
print("- Your Space has sufficient resources (GPU, RAM) for the model.")
|
372 |
-
print("- You have accepted the model's terms on Hugging Face (if required).")
|
373 |
-
tokenizer, model, pipe = None, None, None # Set to None if loading fails
|
374 |
-
|
375 |
-
|
376 |
-
# ---------------------------
|
377 |
-
# 🔎 Query Function (Uses Embedder and Chroma)
|
378 |
-
# ---------------------------
|
379 |
-
# Embedder is loaded during the embedding step, need to ensure it's accessible
|
380 |
-
embedder = None # Initialize embedder as None
|
381 |
-
|
382 |
-
def query_manuals(question, model_filter=None, doc_type_filter=None, top_k=5, rerank_keywords=None):
|
383 |
-
global embedder # Access the global embedder variable
|
384 |
-
|
385 |
-
if collection is None or embedder is None:
|
386 |
-
print("⚠️ ChromaDB or Embedder not loaded. Cannot perform vector search.")
|
387 |
-
return [] # Return empty if Chroma or Embedder is not loaded
|
388 |
-
|
389 |
-
where_filter = {}
|
390 |
-
if model_filter:
|
391 |
-
where_filter["model"] = model_filter.lower()
|
392 |
-
if doc_type_filter:
|
393 |
-
where_filter["doc_type"] = doc_type_filter.lower()
|
394 |
-
|
395 |
-
# ChromaDB query expects a dictionary for 'where'
|
396 |
-
results = collection.query(
|
397 |
-
query_texts=[question],
|
398 |
-
n_results=top_k * 5, # fetch more for reranking
|
399 |
-
where={} if not where_filter else where_filter # Pass empty dict if no filter
|
400 |
-
)
|
401 |
-
|
402 |
-
|
403 |
-
if not results or not results.get("documents") or not results["documents"][0]:
|
404 |
-
return [] # No matches
|
405 |
-
|
406 |
-
try:
|
407 |
-
question_embedding = embedder.encode(question, convert_to_tensor=True)
|
408 |
-
except Exception as e:
|
409 |
-
print(f"Error encoding question: {e}")
|
410 |
-
return [] # Return empty if embedding fails
|
411 |
-
|
412 |
-
# Step 3: Compute semantic + keyword score
|
413 |
-
reranked = []
|
414 |
-
# Ensure results["documents"] and results["metadatas"] are not empty before iterating
|
415 |
-
if results.get("documents") and results["documents"][0]:
|
416 |
-
for i, text in enumerate(results["documents"][0]):
|
417 |
-
meta = results["metadatas"][0][i]
|
418 |
-
|
419 |
-
# Handle potential encoding errors during text embedding
|
420 |
-
try:
|
421 |
-
embedding = embedder.encode(text, convert_to_tensor=True)
|
422 |
-
# Semantic similarity
|
423 |
-
similarity_score = float(util.cos_sim(question_embedding, embedding))
|
424 |
-
except Exception as e:
|
425 |
-
print(f"Error encoding chunk text for reranking: {e}. Skipping chunk.")
|
426 |
-
continue # Skip this chunk if encoding fails
|
427 |
-
|
428 |
-
|
429 |
-
# Keyword score
|
430 |
-
keyword_score = 0
|
431 |
-
if rerank_keywords and text: # Ensure text is not None or empty
|
432 |
-
for kw in rerank_keywords:
|
433 |
-
if kw.lower() in text.lower():
|
434 |
-
keyword_score += 1
|
435 |
-
|
436 |
-
# Combine with tunable weights
|
437 |
-
# Weights should sum to 1 for a simple weighted average
|
438 |
-
final_score = (0.8 * similarity_score) + (0.2 * keyword_score)
|
439 |
-
|
440 |
-
reranked.append({
|
441 |
-
"score": final_score,
|
442 |
-
"text": text,
|
443 |
-
"metadata": meta
|
444 |
-
})
|
445 |
-
|
446 |
-
# Sort by combined score
|
447 |
-
reranked.sort(key=lambda x: x["score"], reverse=True)
|
448 |
-
return reranked[:top_k]
|
449 |
-
|
450 |
-
|
451 |
-
# ---------------------------
|
452 |
-
# 💬 Ask Hugging Face Model
|
453 |
-
# ---------------------------
|
454 |
-
def ask_hf_model(prompt):
|
455 |
-
if pipe is None:
|
456 |
-
return "Hugging Face model not loaded. Cannot generate response."
|
457 |
-
try:
|
458 |
-
# Use the Llama 3.1 chat template
|
459 |
-
messages = [
|
460 |
-
{"role": "system", "content": "You are a technical assistant trained to answer questions using equipment manuals. Use only the provided context to answer the question. If the answer is not clearly in the context, reply: 'I don't know.'"},
|
461 |
-
{"role": "user", "content": prompt}
|
462 |
-
]
|
463 |
-
|
464 |
-
# Apply chat template and generate text
|
465 |
-
prompt_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
466 |
-
|
467 |
-
outputs = pipe(
|
468 |
-
prompt_text,
|
469 |
-
do_sample=True,
|
470 |
-
temperature=0.1, # Keep temperature low for more factual answers
|
471 |
-
top_p=0.9,
|
472 |
-
max_new_tokens=512,
|
473 |
-
pad_token_id=tokenizer.eos_token_id # Set pad_token_id for generation
|
474 |
-
)
|
475 |
-
# The output includes the prompt, we need to extract just the generated part
|
476 |
-
# Find the end of the prompt text in the generated output
|
477 |
-
generated_text = outputs[0]["generated_text"]
|
478 |
-
# The chat template adds the assistant's turn token, look for that to find the response start
|
479 |
-
response_start_token = tokenizer.apply_chat_template([{"role": "assistant", "content": ""}], tokenize=False, add_generation_prompt=False)
|
480 |
-
response_start_index = generated_text.find(response_start_token)
|
481 |
-
|
482 |
-
if response_start_index != -1:
|
483 |
-
response = generated_text[response_start_index + len(response_start_token):].strip()
|
484 |
-
else:
|
485 |
-
# Fallback if the assistant token isn't found
|
486 |
-
response = generated_text.strip()
|
487 |
-
|
488 |
-
# Remove any trailing EOS tokens or similar artifacts
|
489 |
-
if response.endswith(tokenizer.eos_token):
|
490 |
-
response = response[:-len(tokenizer.eos_token)].strip()
|
491 |
-
|
492 |
-
|
493 |
-
return response
|
494 |
-
|
495 |
-
except Exception as e:
|
496 |
-
return f"❌ Error generating response from Hugging Face model: {str(e)}"
|
497 |
-
|
498 |
-
# ---------------------------
|
499 |
-
# 🎯 Full RAG Pipeline
|
500 |
-
# ---------------------------
|
501 |
-
def run_rag_qa(user_question, model_filter=None, doc_type_filter=None): # Added filters as optional inputs
|
502 |
-
# Ensure ChromaDB and the HF model pipeline are loaded before proceeding
|
503 |
-
if collection is None:
|
504 |
-
return "ChromaDB is not loaded. Ensure PDFs are in ./Manuals and the app started correctly."
|
505 |
-
if pipe is None:
|
506 |
-
return "Hugging Face model pipeline is not loaded. Ensure HF_TOKEN is set and the model loaded successfully."
|
507 |
-
|
508 |
-
results = query_manuals(
|
509 |
-
question=user_question,
|
510 |
-
model_filter=model_filter, # Use the optional filter inputs
|
511 |
-
doc_type_filter=doc_type_filter,
|
512 |
-
top_k=MAX_CONTEXT_CHUNKS,
|
513 |
-
rerank_keywords=["diagnostic", "immobilize", "system", "screen", "service", "error"] # Example keywords
|
514 |
-
)
|
515 |
-
|
516 |
-
if not results:
|
517 |
-
# Attempt a broader search if initial filter yields no results
|
518 |
-
if model_filter or doc_type_filter:
|
519 |
-
print("No results with specified filters, trying broader search...")
|
520 |
-
results = query_manuals(
|
521 |
-
question=user_question,
|
522 |
-
model_filter=None, # Remove filters for broader search
|
523 |
-
doc_type_filter=None,
|
524 |
-
top_k=MAX_CONTEXT_CHUNKS,
|
525 |
-
rerank_keywords=["diagnostic", "immobilize", "system", "screen", "service", "error"]
|
526 |
-
)
|
527 |
-
if not results:
|
528 |
-
return "No relevant documents found for the query, even with broader search."
|
529 |
-
else:
|
530 |
-
return "No relevant documents found for the query."
|
531 |
-
|
532 |
-
|
533 |
-
context = "\n\n".join([f"Source File: {r['metadata'].get('source_file', 'N/A')}, Page: {r['metadata'].get('page', 'N/A')}\nText: {r['text'].strip()}" for r in results])
|
534 |
-
|
535 |
-
prompt = f"""
|
536 |
-
Context:
|
537 |
-
{context}
|
538 |
-
|
539 |
-
Question: {user_question}
|
540 |
-
"""
|
541 |
-
|
542 |
-
return ask_hf_model(prompt)
|
543 |
-
|
544 |
-
# ---------------------------
|
545 |
-
# --- Initial Setup ---
|
546 |
-
# This code runs when the app starts on Hugging Face Spaces
|
547 |
-
# It processes PDFs, chunks, and builds the ChromaDB
|
548 |
-
# ---------------------------
|
549 |
-
|
550 |
-
print("Starting initial setup...")
|
551 |
-
|
552 |
-
# Ensure Tesseract is available on the system (Hugging Face Spaces usually has it, but this command is good practice)
|
553 |
-
# Using ! in app.py is generally discouraged, better to ensure the environment has it
|
554 |
-
# For HF Spaces, you might need to use a Dockerfile or rely on the default environment.
|
555 |
-
# If Tesseract isn't found, the OCR part might fail.
|
556 |
-
|
557 |
-
# Process PDFs and extract pages
|
558 |
-
all_pages = process_pdfs_for_pages(pdf_folder, output_jsonl_pages)
|
559 |
-
|
560 |
-
# Chunk the pages
|
561 |
-
all_chunks = []
|
562 |
-
if all_pages: # Only chunk if pages were processed
|
563 |
-
all_chunks = chunk_pages(output_jsonl_pages, output_jsonl_chunks, chunk_size, chunk_overlap)
|
564 |
-
|
565 |
-
# Embed chunks into ChromaDB
|
566 |
-
collection = None # Initialize collection
|
567 |
-
if all_chunks: # Only embed if chunks were created
|
568 |
-
collection, embed_error = embed_chunks_into_chroma(output_jsonl_chunks, chroma_path, collection_name)
|
569 |
-
if embed_error:
|
570 |
-
print(f"Error during embedding: {embed_error}")
|
571 |
-
|
572 |
-
|
573 |
-
print("Initial setup complete.")
|
574 |
-
|
575 |
-
# ---------------------------
|
576 |
-
# 🖥️ Gradio Interface
|
577 |
-
# ---------------------------
|
578 |
-
# Only define and launch the interface if the necessary components loaded
|
579 |
-
if collection is not None and pipe is not None:
|
580 |
-
with gr.Blocks() as demo:
|
581 |
-
gr.Markdown("""# 🧠 Manual QA via Hugging Face Llama 3.1
|
582 |
-
Ask a technical question and get answers using your own PDF manual database and a Hugging Face model.
|
583 |
-
**Note:** Initial startup might take time to process manuals and build the search index. Ensure your `Manuals` folder is uploaded and the `HF_TOKEN` secret is set in Space settings.
|
584 |
-
""")
|
585 |
-
with gr.Row():
|
586 |
-
question = gr.Textbox(label="Your Question", placeholder="e.g. How do I access diagnostics on the SE3 console?")
|
587 |
-
with gr.Row():
|
588 |
-
model_filter_input = gr.Textbox(label="Filter by Model (Optional)", placeholder="e.g. se3hd")
|
589 |
-
doc_type_filter_input = gr.Dropdown(label="Filter by Document Type (Optional)", choices=["owner manual", "service manual", "assembly instructions", "installer alert", "parts manual", "service bulletin", "unknown", None], value=None, allow_custom_value=True)
|
590 |
-
|
591 |
-
submit = gr.Button("🔍 Ask")
|
592 |
-
answer = gr.Textbox(label="Answer", lines=10) # Increased lines for better readability
|
593 |
-
|
594 |
-
# Call the run_rag_qa function when the button is clicked
|
595 |
-
submit.click(
|
596 |
-
fn=run_rag_qa,
|
597 |
-
inputs=[question, model_filter_input, doc_type_filter_input],
|
598 |
-
outputs=[answer]
|
599 |
-
)
|
600 |
-
|
601 |
-
# In Hugging Face Spaces, the app is launched automatically.
|
602 |
-
# The demo.launch() call is removed.
|
603 |
-
# demo.launch()
|
604 |
-
else:
|
605 |
-
print("Gradio demo will not launch because RAG components (ChromaDB or HF Model) failed to load during setup.")
|
606 |
-
# You could add a simple Gradio interface here to show an error message
|
607 |
-
# if you wanted to provide user feedback in the Space UI even on failure.
|
608 |
-
# Example:
|
609 |
-
# with gr.Blocks() as error_demo:
|
610 |
-
# gr.Markdown("## Application Failed to Load")
|
611 |
-
# gr.Textbox(label="Error Details", value="RAG components (ChromaDB or HF Model) failed to initialize. Check logs and Space settings (HF_TOKEN, resources).", interactive=False)
|
612 |
-
# error_demo.launch()
|
|
|
1 |
+
# ✅ SmartManuals-AI app.py (for Hugging Face Spaces)
|
2 |
+
# Optimized to support multiple LLMs, Gradio UI, and secure on-device document QA
|
3 |
+
|
4 |
import os
|
5 |
import json
|
6 |
+
import io
|
7 |
+
import fitz
|
8 |
import nltk
|
9 |
import chromadb
|
10 |
+
import pytesseract
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
from PIL import Image
|
14 |
from tqdm import tqdm
|
15 |
from nltk.tokenize import sent_tokenize
|
16 |
from sentence_transformers import SentenceTransformer, util
|
|
|
|
|
17 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
|
|
|
|
|
18 |
import gradio as gr
|
19 |
|
20 |
+
# ----------------------
|
21 |
+
# 🔧 Configurations
|
22 |
+
# ----------------------
|
23 |
+
PDF_DIR = "./Manuals"
|
24 |
+
CHROMA_PATH = "./chroma_store"
|
25 |
+
COLLECTION_NAME = "manual_chunks"
|
26 |
+
MAX_CONTEXT_CHUNKS = 3
|
27 |
+
CHUNK_SIZE = 750
|
28 |
+
CHUNK_OVERLAP = 100
|
29 |
+
MODEL_OPTIONS = [
|
30 |
+
"meta-llama/Llama-3.1-8B-Instruct",
|
31 |
+
"meta-llama/Llama-4-Scout-17B-16E-Instruct",
|
32 |
+
"google/gemma-1.1-7b-it",
|
33 |
+
"Qwen/Qwen1.5-14B-Chat",
|
34 |
+
"mistralai/Mistral-7B-Instruct-v0.3"
|
35 |
+
]
|
36 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
37 |
+
|
38 |
+
# ----------------------
|
39 |
+
# 📚 NLTK Setup
|
40 |
+
# ----------------------
|
41 |
try:
|
42 |
nltk.data.find('tokenizers/punkt')
|
|
|
|
|
43 |
except LookupError:
|
44 |
nltk.download('punkt')
|
45 |
|
46 |
+
# ----------------------
|
47 |
+
# 📄 Utility Functions
|
48 |
+
# ----------------------
|
49 |
+
def extract_text_or_ocr(page):
|
|
|
50 |
text = page.get_text().strip()
|
51 |
if text:
|
52 |
+
return text, False
|
53 |
+
pix = page.get_pixmap(dpi=300)
|
54 |
+
img_data = pix.tobytes("png")
|
55 |
+
img = Image.open(io.BytesIO(img_data))
|
56 |
+
return pytesseract.image_to_string(img).strip(), True
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
def clean_text(text):
|
59 |
+
return "\n".join([line.strip() for line in text.splitlines() if line.strip()])
|
|
|
|
|
60 |
|
|
|
|
|
|
|
61 |
def tokenize_sentences(text):
|
62 |
return sent_tokenize(text)
|
63 |
|
64 |
+
def split_chunks(sentences, max_tokens=CHUNK_SIZE, overlap=CHUNK_OVERLAP):
|
65 |
+
chunks, chunk, length = [], [], 0
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
for sentence in sentences:
|
67 |
+
count = len(sentence.split())
|
68 |
+
if length + count > max_tokens and chunk:
|
69 |
+
chunks.append(" ".join(chunk))
|
70 |
+
chunk = chunk[-overlap:]
|
71 |
+
length = sum(len(s.split()) for s in chunk)
|
72 |
+
chunk.append(sentence)
|
73 |
+
length += count
|
74 |
+
if chunk: chunks.append(" ".join(chunk))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
return chunks
|
76 |
|
77 |
+
def extract_metadata(filename):
|
|
|
|
|
|
|
|
|
78 |
name = filename.lower().replace("_", " ").replace("-", " ")
|
79 |
+
meta = {"model": "unknown", "doc_type": "unknown", "brand": "life fitness"}
|
80 |
+
if "om" in name or "owner" in name: meta["doc_type"] = "owner manual"
|
81 |
+
elif "sm" in name or "service" in name: meta["doc_type"] = "service manual"
|
82 |
+
elif "assembly" in name: meta["doc_type"] = "assembly instructions"
|
83 |
+
elif "alert" in name: meta["doc_type"] = "installer alert"
|
84 |
+
elif "parts" in name: meta["doc_type"] = "parts manual"
|
85 |
+
elif "bulletin" in name: meta["doc_type"] = "service bulletin"
|
86 |
+
for kw in ["se3hd", "se3", "se4", "symbio", "explore", "integrity x", "integrity sl", "everest", "engage", "inspire", "discover", "95t", "95x", "95c", "95r", "97c"]:
|
87 |
+
if kw.replace(" ", "") in name.replace(" ", ""): meta["model"] = kw
|
88 |
+
return meta
|
89 |
+
|
90 |
+
# ----------------------
|
91 |
+
# 🧠 Load LLM
|
92 |
+
# ----------------------
|
93 |
+
def load_llm(model_id):
|
94 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
|
95 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, token=HF_TOKEN, torch_dtype=torch.float32)
|
96 |
+
return pipeline("text-generation", model=model, tokenizer=tokenizer, device=-1)
|
97 |
+
|
98 |
+
# ----------------------
|
99 |
+
# 🧠 Chroma + Embed
|
100 |
+
# ----------------------
|
101 |
+
def embed_pdfs():
|
102 |
+
os.makedirs(CHROMA_PATH, exist_ok=True)
|
103 |
+
client = chromadb.PersistentClient(path=CHROMA_PATH)
|
104 |
+
if COLLECTION_NAME in [c.name for c in client.list_collections()]:
|
105 |
+
client.delete_collection(COLLECTION_NAME)
|
106 |
+
collection = client.create_collection(COLLECTION_NAME)
|
107 |
+
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
108 |
+
|
109 |
+
for file in tqdm(os.listdir(PDF_DIR)):
|
110 |
+
if not file.lower().endswith(".pdf"): continue
|
111 |
+
doc = fitz.open(os.path.join(PDF_DIR, file))
|
112 |
+
meta = extract_metadata(file)
|
113 |
+
for page_num, page in enumerate(doc, 1):
|
114 |
+
text, _ = extract_text_or_ocr(page)
|
115 |
+
if not text.strip(): continue
|
116 |
+
sents = tokenize_sentences(clean_text(text))
|
117 |
+
chunks = split_chunks(sents)
|
118 |
+
for i, chunk in enumerate(chunks):
|
119 |
+
chunk_id = f"{file}::p{page_num}::c{i}"
|
120 |
+
emb = embedder.encode([chunk])[0].tolist()
|
121 |
+
collection.add(
|
122 |
+
documents=[chunk],
|
123 |
+
ids=[chunk_id],
|
124 |
+
embeddings=[emb],
|
125 |
+
metadatas=[{**meta, "source_file": file, "page": page_num}]
|
126 |
+
)
|
127 |
+
return collection, embedder
|
128 |
+
|
129 |
+
# ----------------------
|
130 |
+
# 🔍 RAG Pipeline
|
131 |
+
# ----------------------
|
132 |
+
def answer_query(q, model_id):
|
133 |
+
collection, embedder = embed_pdfs()
|
134 |
+
pipe = load_llm(model_id)
|
135 |
+
emb_q = embedder.encode([q])[0].tolist()
|
136 |
+
results = collection.query(query_embeddings=[emb_q], n_results=MAX_CONTEXT_CHUNKS)
|
137 |
+
context = "\n\n".join(results['documents'][0])
|
138 |
+
prompt = f"Use the context below to answer the question.\nContext:\n{context}\n\nQuestion: {q}\nAnswer:"
|
139 |
+
return pipe(prompt)[0]['generated_text'].split("Answer:")[-1].strip()
|
140 |
+
|
141 |
+
# ----------------------
|
142 |
+
# 🚀 Gradio UI
|
143 |
+
# ----------------------
|
144 |
+
with gr.Blocks() as app:
|
145 |
+
gr.Markdown("""# SmartManuals-AI
|
146 |
+
**Local-first document QA** powered by OCR, ChromaDB & your choice of LLM (via Hugging Face).
|
147 |
+
""")
|
148 |
+
with gr.Row():
|
149 |
+
question = gr.Textbox(placeholder="Ask a question from the manuals...", label="Question")
|
150 |
+
model_choice = gr.Dropdown(label="Choose Model", choices=MODEL_OPTIONS, value=MODEL_OPTIONS[0])
|
151 |
+
output = gr.Textbox(label="Answer", lines=10)
|
152 |
+
run = gr.Button("Run RAG")
|
153 |
+
run.click(fn=answer_query, inputs=[question, model_choice], outputs=output)
|
154 |
+
|
155 |
+
if __name__ == "__main__":
|
156 |
+
app.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|