|
import os |
|
import gradio as gr |
|
import requests |
|
import pandas as pd |
|
from io import BytesIO |
|
|
|
|
|
from groq import Groq |
|
from langchain_groq import ChatGroq |
|
from langchain.agents import AgentExecutor, create_tool_calling_agent |
|
from langchain_community.tools.tavily_search import TavilySearchResults |
|
from langchain_core.prompts import ChatPromptTemplate |
|
from langchain.tools import Tool |
|
|
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
|
|
def transcribe_audio_from_task_id(task_id: str) -> str: |
|
""" |
|
Downloads an audio file for a given task_id from the scoring server, |
|
transcribes it using the GROQ API with Whisper, and returns the text. |
|
Use this tool ONLY when a question explicitly mentions an audio file or recording. |
|
The task_id MUST be provided as the input. |
|
""" |
|
print(f"Tool 'transcribe_audio_from_task_id' (using Groq) called with task_id: {task_id}") |
|
try: |
|
|
|
file_url = f"{DEFAULT_API_URL}/files/{task_id}" |
|
print(f"Downloading audio file from: {file_url}") |
|
audio_response = requests.get(file_url) |
|
audio_response.raise_for_status() |
|
|
|
|
|
audio_bytes = BytesIO(audio_response.content) |
|
audio_bytes.name = f"{task_id}.mp3" |
|
|
|
|
|
print("Initializing Groq client for transcription...") |
|
client = Groq(api_key=os.getenv("GROQ_API_KEY")) |
|
|
|
print("Transcribing audio with Groq's Whisper...") |
|
transcription = client.audio.transcriptions.create( |
|
file=audio_bytes, |
|
model="whisper-large-v3", |
|
response_format="text", |
|
) |
|
|
|
transcribed_text = str(transcription) |
|
print(f"Transcription successful. Result: {transcribed_text}") |
|
return transcribed_text |
|
|
|
except Exception as e: |
|
error_message = f"Error in Groq audio transcription tool: {e}" |
|
print(error_message) |
|
return error_message |
|
|
|
|
|
|
|
class LangChainAgent: |
|
def __init__(self, groq_api_key: str, tavily_api_key: str): |
|
print("Initializing LangChainAgent...") |
|
|
|
|
|
self.llm = ChatGroq(model_name="llama3-70b-8192", groq_api_key=groq_api_key, temperature=0.0) |
|
|
|
|
|
audio_tool = Tool( |
|
name="audio_transcriber", |
|
func=transcribe_audio_from_task_id, |
|
description="Use this tool to transcribe an audio file. The input must be the task_id of the question.", |
|
) |
|
self.tools = [ |
|
TavilySearchResults(max_results=3, tavily_api_key=tavily_api_key, name="web_search"), |
|
audio_tool, |
|
] |
|
|
|
|
|
prompt = ChatPromptTemplate.from_messages([ |
|
("system", ( |
|
"You are a powerful problem-solving agent. Your goal is to answer the user's question accurately. " |
|
"You have access to the following tools: a web search tool and an audio transcription tool.\n" |
|
"RULES:\n" |
|
"- Carefully analyze the user's question to determine if a tool is needed.\n" |
|
"- For questions requiring current information or facts, use the 'web_search' tool.\n" |
|
"- For questions that mention an audio file (.mp3, recording, voice memo, etc.), use the 'audio_transcriber' tool with the provided 'task_id'.\n" |
|
"- Once you have all the necessary information, you MUST provide ONLY THE FINAL ANSWER to the user's question. Do not include any extra conversation, explanations, apologies, or introductory phrases." |
|
)), |
|
("human", "Question: {input}\nTask ID: {task_id}"), |
|
("placeholder", "{agent_scratchpad}"), |
|
]) |
|
|
|
agent = create_tool_calling_agent(self.llm, self.tools, prompt) |
|
self.agent_executor = AgentExecutor(agent=agent, tools=self.tools, verbose=True, handle_parsing_errors=True) |
|
print("LangChainAgent initialized.") |
|
|
|
def __call__(self, question: str, task_id: str) -> str: |
|
print(f"Agent received question (ID: {task_id}): {question[:50]}...") |
|
try: |
|
response = self.agent_executor.invoke({"input": question, "task_id": task_id}) |
|
answer = response.get("output", "Agent failed to produce an answer.") |
|
except Exception as e: |
|
answer = f"Agent execution failed with an error: {e}" |
|
print(f"Agent generated answer: {answer}") |
|
return answer |
|
|
|
|
|
|
|
def run_and_submit_all(profile: gr.OAuthProfile | None): |
|
space_id = os.getenv("SPACE_ID") |
|
if not profile: |
|
return "Please Login to Hugging Face with the button.", None |
|
username = profile.username |
|
print(f"User logged in: {username}") |
|
|
|
try: |
|
groq_api_key = os.getenv("GROQ_API_KEY") |
|
tavily_api_key = os.getenv("TAVILY_API_KEY") |
|
if not all([groq_api_key, tavily_api_key]): |
|
raise ValueError("An API key secret (GROQ or TAVILY) is missing.") |
|
agent = LangChainAgent(groq_api_key=groq_api_key, tavily_api_key=tavily_api_key) |
|
except Exception as e: |
|
return f"Error initializing agent: {e}", None |
|
|
|
questions_url = f"{DEFAULT_API_URL}/questions" |
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=20) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
except Exception as e: |
|
return f"Error fetching questions: {e}", None |
|
|
|
results_log, answers_payload = [], [] |
|
for item in questions_data: |
|
task_id, question_text = item.get("task_id"), item.get("question") |
|
if not task_id or not question_text: continue |
|
submitted_answer = agent(question=question_text, task_id=task_id) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload} |
|
submit_url = f"{DEFAULT_API_URL}/submit" |
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=90) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = (f"Submission Successful!\nUser: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}") |
|
return final_status, pd.DataFrame(results_log) |
|
except Exception as e: |
|
return f"Submission Failed: {e}", pd.DataFrame(results_log) |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Advanced Agent Evaluation Runner (Search + Groq Audio)") |
|
gr.Markdown("This agent can search the web with Tavily and transcribe audio with Groq's Whisper.") |
|
gr.LoginButton() |
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) |
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
for key in ["GROQ_API_KEY", "TAVILY_API_KEY"]: |
|
print(f"✅ {key} secret is set." if os.getenv(key) else f"⚠️ WARNING: {key} secret is not set.") |
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
demo.launch(debug=True, share=False) |