File size: 7,432 Bytes
10e9b7d
 
eccf8e4
3c4371f
2a43fe1
10e9b7d
c0a6618
 
 
 
 
 
 
e80aab9
3db6293
e80aab9
c0a6618
 
 
 
 
2a43fe1
c0a6618
2a43fe1
c0a6618
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a43fe1
31243f4
2a43fe1
c0a6618
 
2a43fe1
c0a6618
 
 
2a43fe1
c0a6618
 
2a43fe1
c0a6618
 
 
 
 
4021bf3
2a43fe1
 
31243f4
c0a6618
31243f4
 
c0a6618
 
7e4a06b
c0a6618
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
c0a6618
31243f4
2a43fe1
c0a6618
 
 
 
31243f4
3c4371f
31243f4
2a43fe1
36ed51a
2a43fe1
3c4371f
c0a6618
31243f4
eccf8e4
c0a6618
7d65c66
31243f4
7d65c66
c0a6618
e80aab9
c0a6618
7d65c66
 
31243f4
 
 
 
 
c0a6618
 
 
31243f4
c0a6618
7d65c66
e80aab9
c0a6618
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
31243f4
 
7d65c66
31243f4
 
 
e80aab9
c0a6618
e80aab9
c0a6618
0ee0419
e514fd7
 
c0a6618
 
 
e514fd7
e80aab9
dec180d
31243f4
9088b99
7d65c66
31243f4
 
 
e80aab9
 
 
3c4371f
c0a6618
2a43fe1
c0a6618
2a43fe1
c0a6618
 
 
 
 
2a43fe1
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import os
import gradio as gr
import requests
import pandas as pd
from groq import Groq

# --- New Imports for LangChain Agent ---
from langchain_groq import ChatGroq
from langchain.agents import AgentExecutor, create_tool_calling_agent
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.prompts import ChatPromptTemplate


# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"


# --- Agent Definition ---
# This new agent uses LangChain to orchestrate an LLM with tools.
class LangChainAgent:
    def __init__(self, groq_api_key, tavily_api_key):
        """
        Initializes the agent with an LLM and a set of tools.
        """
        print("Initializing LangChainAgent...")

        # 1. Initialize the LLM
        # We use ChatGroq, the LangChain integration for Groq's API.
        self.llm = ChatGroq(
            model_name="llama3-70b-8192",
            groq_api_key=groq_api_key,
            temperature=0.0
        )

        # 2. Define the tools the agent can use
        # For now, we'll just give it a web search tool.
        self.tools = [
            TavilySearchResults(max_results=3, tavily_api_key=tavily_api_key)
        ]

        # 3. Create the Agent Prompt
        # This tells the agent how to behave and how to use the tools.
        prompt = ChatPromptTemplate.from_messages(
            [
                ("system", "You are a helpful assistant. You have access to a web search tool. Respond with the final answer to the user's question."),
                ("placeholder", "{chat_history}"),
                ("human", "{input}"),
                ("placeholder", "{agent_scratchpad}"),
            ]
        )

        # 4. Create the Agent itself
        agent = create_tool_calling_agent(self.llm, self.tools, prompt)

        # 5. Create the Agent Executor
        # This is the runtime that will actually execute the agent's logic.
        self.agent_executor = AgentExecutor(
            agent=agent,
            tools=self.tools,
            verbose=True # Set to True to see the agent's thought process
        )
        print("LangChainAgent initialized.")


    def __call__(self, question: str) -> str:
        """
        This method is called to answer a question.
        It invokes the agent executor.
        """
        print(f"LangChainAgent received question (first 50 chars): {question[:50]}...")
        
        # We need to handle the case where the agent makes a mistake
        try:
            response = self.agent_executor.invoke({"input": question})
            answer = response.get("output", "No answer found.")
        except Exception as e:
            print(f"An error occurred in the agent executor: {e}")
            answer = f"Agent failed with an error: {e}"

        print(f"LangChainAgent generated answer: {answer}")
        return answer


def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches questions, runs the LangChainAgent on them, submits the answers,
    and displays the results.
    """
    # --- Authentication and Setup ---
    space_id = os.getenv("SPACE_ID")
    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent (using the new LangChainAgent)
    try:
        groq_api_key = os.getenv("GROQ_API_KEY")
        tavily_api_key = os.getenv("TAVILY_API_KEY")
        if not groq_api_key or not tavily_api_key:
            raise ValueError("API Keys (GROQ_API_KEY, TAVILY_API_KEY) not found in secrets.")
        agent = LangChainAgent(groq_api_key=groq_api_key, tavily_api_key=tavily_api_key)
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(f"Agent code link: {agent_code}")

    # 2. Fetch Questions (same as before)
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=20)
        response.raise_for_status()
        questions_data = response.json()
    except Exception as e:
        return f"Error fetching questions: {e}", None

    # 3. Run your Agent (same as before)
    results_log = []
    answers_payload = []
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            continue
        submitted_answer = agent(question_text)
        answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
        results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})

    # 4. Prepare Submission (same as before)
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}

    # 5. Submit (same as before)
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        results_df = pd.DataFrame(results_log)
        return status_message, results_df

# --- Build Gradio Interface (Mostly the same) ---
with gr.Blocks() as demo:
    gr.Markdown("# LangChain Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1.  Make sure you have set `GROQ_API_KEY` and `TAVILY_API_KEY` in your Space's secrets.
        2.  Log in below. This is required for submission.
        3.  Click 'Run Evaluation' to start the agent. You can see its thought process in the application logs!
        """
    )
    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")
    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Startup checks for secrets
    if not os.getenv("GROQ_API_KEY"):
        print("⚠️ WARNING: GROQ_API_KEY secret not set.")
    else:
        print("✅ GROQ_API_KEY secret is set.")
    if not os.getenv("TAVILY_API_KEY"):
        print("⚠️ WARNING: TAVILY_API_KEY secret not set.")
    else:
        print("✅ TAVILY_API_KEY secret is set.")
    print("-"*(60 + len(" App Starting ")) + "\n")
    demo.launch(debug=True, share=False)