Spaces:
Configuration error
Configuration error
import os | |
import sys | |
# Add project root to sys.path for utils import | |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) | |
import streamlit as st | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification, pipeline | |
from langchain_community.vectorstores import FAISS | |
from utils.pdf_vector_utils import load_vector_store | |
st.set_page_config(page_title="HER2 Q&A Chatbot") | |
st.title("🔬 HER2 Q&A Chatbot (with Chat History)") | |
# Determine device | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
def build_prompt(context: str, history: list, question: str) -> str: | |
history_text = "\n".join( | |
f"User: {turn['user']}\nAssistant: {turn['assistant']}" for turn in history | |
) | |
prompt = ( | |
"You are a biomedical research assistant. Use the provided paper context " | |
"and conversation history to answer the user's question accurately and in detail.\n\n" | |
f"Context:\n{context}\n\n" | |
f"Conversation History:\n{history_text}\n" | |
f"User: {question}\nAssistant:" | |
) | |
return prompt | |
def load_vectorstore(): | |
db_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "her2_faiss_db")) | |
return load_vector_store(persist_directory=db_path, model_name="sentence-transformers/allenai-specter") | |
def load_phi2_pipeline(): | |
model_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
try: | |
torch.cuda.empty_cache() | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32 | |
).to(DEVICE) | |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if DEVICE == "cuda" else -1) | |
return tokenizer, pipe | |
except RuntimeError as e: | |
if "CUDA out of memory" in str(e): | |
torch.cuda.empty_cache() | |
st.warning("⚠️ GPU out of memory. Falling back to CPU.") | |
model = AutoModelForCausalLM.from_pretrained(model_id).to("cpu") | |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=-1) | |
return tokenizer, pipe | |
else: | |
raise e | |
def load_reranker(): | |
model_id = "BAAI/bge-reranker-base" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForSequenceClassification.from_pretrained(model_id).to(DEVICE) | |
return tokenizer, model | |
def rerank_chunks(query: str, docs: list, tokenizer, model, top_k: int = 5) -> list: | |
pairs = [(query, doc.page_content) for doc in docs] | |
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors="pt").to(DEVICE) | |
with torch.no_grad(): | |
logits = model(**inputs).logits.squeeze() | |
scores = logits.tolist() if logits.ndim > 0 else [logits.item()] | |
reranked = sorted(zip(docs, scores), key=lambda x: x[1], reverse=True) | |
return [doc for doc, _ in reranked[:top_k]] | |
def get_answer(query: str, history: list) -> str: | |
docs = vectorstore.similarity_search(query, k=5) | |
reranker_tokenizer, reranker_model = load_reranker() | |
top_docs = rerank_chunks(query, docs, reranker_tokenizer, reranker_model, top_k=3) | |
context = "\n\n".join(doc.page_content[:300] for doc in top_docs) | |
prompt = build_prompt(context, history, query) | |
result = llm_pipeline(prompt, max_new_tokens=256, do_sample=False, temperature=0.3) | |
return result[0]["generated_text"].split("Assistant:")[-1].strip() | |
# Load resources | |
vectorstore = load_vectorstore() | |
llm_tokenizer, llm_pipeline = load_phi2_pipeline() | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = [] | |
query = st.text_input("Ask something about the HER2 paper...") | |
if query: | |
with st.spinner("Thinking..."): | |
try: | |
answer = get_answer(query, st.session_state.chat_history) | |
st.session_state.chat_history.append({"user": query, "assistant": answer}) | |
except Exception as e: | |
st.error(f"An error occurred: {e}") | |
# Display chat history | |
for turn in st.session_state.chat_history: | |
st.markdown(f"**You:** {turn['user']}") | |
st.markdown(f"**Bot:** {turn['assistant']}") | |