Spaces:
Configuration error
Configuration error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
|
4 |
+
# Add project root to sys.path for utils import
|
5 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
|
6 |
+
|
7 |
+
import streamlit as st
|
8 |
+
import torch
|
9 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification, pipeline
|
10 |
+
from langchain_community.vectorstores import FAISS
|
11 |
+
from utils.pdf_vector_utils import load_vector_store
|
12 |
+
|
13 |
+
st.set_page_config(page_title="HER2 Q&A Chatbot")
|
14 |
+
st.title("🔬 HER2 Q&A Chatbot (with Chat History)")
|
15 |
+
|
16 |
+
# Determine device
|
17 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
+
|
19 |
+
def build_prompt(context: str, history: list, question: str) -> str:
|
20 |
+
history_text = "\n".join(
|
21 |
+
f"User: {turn['user']}\nAssistant: {turn['assistant']}" for turn in history
|
22 |
+
)
|
23 |
+
prompt = (
|
24 |
+
"You are a biomedical research assistant. Use the provided paper context "
|
25 |
+
"and conversation history to answer the user's question accurately and in detail.\n\n"
|
26 |
+
f"Context:\n{context}\n\n"
|
27 |
+
f"Conversation History:\n{history_text}\n"
|
28 |
+
f"User: {question}\nAssistant:"
|
29 |
+
)
|
30 |
+
return prompt
|
31 |
+
|
32 |
+
@st.cache_resource
|
33 |
+
def load_vectorstore():
|
34 |
+
db_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "her2_faiss_db"))
|
35 |
+
return load_vector_store(persist_directory=db_path, model_name="sentence-transformers/allenai-specter")
|
36 |
+
|
37 |
+
@st.cache_resource
|
38 |
+
def load_phi2_pipeline():
|
39 |
+
model_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
41 |
+
try:
|
42 |
+
torch.cuda.empty_cache()
|
43 |
+
model = AutoModelForCausalLM.from_pretrained(
|
44 |
+
model_id, torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32
|
45 |
+
).to(DEVICE)
|
46 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if DEVICE == "cuda" else -1)
|
47 |
+
return tokenizer, pipe
|
48 |
+
except RuntimeError as e:
|
49 |
+
if "CUDA out of memory" in str(e):
|
50 |
+
torch.cuda.empty_cache()
|
51 |
+
st.warning("⚠️ GPU out of memory. Falling back to CPU.")
|
52 |
+
model = AutoModelForCausalLM.from_pretrained(model_id).to("cpu")
|
53 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=-1)
|
54 |
+
return tokenizer, pipe
|
55 |
+
else:
|
56 |
+
raise e
|
57 |
+
|
58 |
+
@st.cache_resource
|
59 |
+
def load_reranker():
|
60 |
+
model_id = "BAAI/bge-reranker-base"
|
61 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
62 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_id).to(DEVICE)
|
63 |
+
return tokenizer, model
|
64 |
+
|
65 |
+
def rerank_chunks(query: str, docs: list, tokenizer, model, top_k: int = 5) -> list:
|
66 |
+
pairs = [(query, doc.page_content) for doc in docs]
|
67 |
+
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors="pt").to(DEVICE)
|
68 |
+
|
69 |
+
with torch.no_grad():
|
70 |
+
logits = model(**inputs).logits.squeeze()
|
71 |
+
scores = logits.tolist() if logits.ndim > 0 else [logits.item()]
|
72 |
+
|
73 |
+
reranked = sorted(zip(docs, scores), key=lambda x: x[1], reverse=True)
|
74 |
+
return [doc for doc, _ in reranked[:top_k]]
|
75 |
+
|
76 |
+
def get_answer(query: str, history: list) -> str:
|
77 |
+
docs = vectorstore.similarity_search(query, k=5)
|
78 |
+
reranker_tokenizer, reranker_model = load_reranker()
|
79 |
+
top_docs = rerank_chunks(query, docs, reranker_tokenizer, reranker_model, top_k=3)
|
80 |
+
|
81 |
+
context = "\n\n".join(doc.page_content[:300] for doc in top_docs)
|
82 |
+
prompt = build_prompt(context, history, query)
|
83 |
+
|
84 |
+
result = llm_pipeline(prompt, max_new_tokens=256, do_sample=False, temperature=0.3)
|
85 |
+
return result[0]["generated_text"].split("Assistant:")[-1].strip()
|
86 |
+
|
87 |
+
# Load resources
|
88 |
+
vectorstore = load_vectorstore()
|
89 |
+
llm_tokenizer, llm_pipeline = load_phi2_pipeline()
|
90 |
+
|
91 |
+
if "chat_history" not in st.session_state:
|
92 |
+
st.session_state.chat_history = []
|
93 |
+
|
94 |
+
query = st.text_input("Ask something about the HER2 paper...")
|
95 |
+
|
96 |
+
if query:
|
97 |
+
with st.spinner("Thinking..."):
|
98 |
+
try:
|
99 |
+
answer = get_answer(query, st.session_state.chat_history)
|
100 |
+
st.session_state.chat_history.append({"user": query, "assistant": answer})
|
101 |
+
except Exception as e:
|
102 |
+
st.error(f"An error occurred: {e}")
|
103 |
+
|
104 |
+
# Display chat history
|
105 |
+
for turn in st.session_state.chat_history:
|
106 |
+
st.markdown(f"**You:** {turn['user']}")
|
107 |
+
st.markdown(f"**Bot:** {turn['assistant']}")
|