Spaces:
Sleeping
Sleeping
File size: 6,727 Bytes
cee942f 0eb636f cee942f 0eb636f cee942f 0eb636f bf56562 cee942f 9964762 cee942f 0eb636f cee942f 0eb636f cee942f 0eb636f cee942f 0eb636f cee942f 0eb636f cee942f 0eb636f cee942f 0eb636f cee942f bf56562 cee942f 0eb636f cee942f bf56562 0eb636f cee942f 0eb636f cee942f 0eb636f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import os
import csv
import time
import hashlib
import gradio as gr
from datetime import datetime
from src.db.vector_store import VectorStore
from src.modelling.embed import DalaEmbedder
from src.modelling.topic_model import TopicModeller
from src.modelling.transliterate import DalaTransliterator
from src.utils.data_utils import (
extract_text_with_pdfplumber,
extract_text_with_ocr,
chunk_text,
deduplicate_chunks,
repair_extracted_text
)
from typing import Any, List, Tuple
# Instantiate components
translit = DalaTransliterator()
embedder = DalaEmbedder()
vector_db = VectorStore()
topic_modeller = TopicModeller()
def print_recent_logs(n: int = 5):
"""
Print the last N log lines to the container logs for developer monitoring.
"""
log_file = "semanticdala_log.csv"
if os.path.exists(log_file):
print(f"\n[SEMANTICDALA USAGE LOG - Last {n} Entries]")
with open(log_file, "r") as f:
lines = f.readlines()
for line in lines[-n:]:
print(line.strip())
print("[END LOG SNAPSHOT]\n")
def log_submission(filename: str, num_chunks: int, start_time: float, status: str, session_id: str = "anonymous") -> None:
"""
Basic logging utility to keep track of app usage.
"""
log_file = "semanticdala_log.csv"
end_time = time.time()
duration = round(end_time - start_time, 2)
# Anonymise filename for privacy
anonymized_name = hashlib.sha256(filename.encode()).hexdigest()[:10]
# Get file size in bytes
file_size = os.path.getsize(filename) if os.path.exists(filename) else 0
file_size_mb = round(file_size / (1024 * 1024), 2)
log_entry = {
"timestamp": datetime.now(datetime.UTC).isoformat(),
"filename_hash": anonymized_name,
"file_size_mb": file_size_mb,
"num_chunks": num_chunks,
"processing_time_sec": duration,
"status": status,
"session_id": session_id
}
file_exists = os.path.isfile(log_file)
with open(log_file, mode = 'a', newline = "") as f:
writer = csv.DictWriter(f, fieldnames = log_entry.keys())
if not file_exists:
writer.writeheader()
writer.writerow(log_entry)
def extract_text(file: Any) -> str:
"""
Try multiple PDF extraction strategies, with fallback to OCR if necessary.
"""
if file.name.endswith(".pdf"):
text = extract_text_with_pdfplumber(file)
if len(text.strip()) > 100:
return repair_extracted_text(text)
print("[INFO] Falling back to OCR...")
return extract_text_with_ocr(file)
elif file.name.endswith(".txt"):
return repair_extracted_text(file.read().decode("utf-8", errors = "ignore"))
return ""
def process_file(file: Any) -> Tuple[List[Tuple[str, int]], Any, Any]:
"""
Main file processing function, which will also chunk, transliterate and cluster
the file contents, as well as plot the clusters.
"""
start = time.time()
try:
raw_text = extract_text(file)
chunks = chunk_text(raw_text)
# Deduplicate and embed embedding
translits = translit.batch_transliterate(chunks)
dedup_translits = deduplicate_chunks(translits, embedder)
embeddings = embedder.embed_batch(dedup_translits)
# Clear previous entries before adding
vector_db.index.reset()
vector_db.metadata = []
metadata = [{"id": f"{file.name}_chunk{i}", "text": t} for i, t in enumerate(dedup_translits)]
vector_db.add(embeddings, metadata)
# Topic modelling
topics, fig, topic_labels, umap_fig = topic_modeller.fit(translits, embeddings)
# Get a list of rows for topic labels
overview_table = [[k, v] for k, v in topic_labels.items()]
# Zip back transliterated text with topic IDs
annotated = list(zip(translits, topics))
# Log success
log_submission(file.name, len(chunks), start, status = "success")
print_recent_logs()
return annotated, fig, overview_table, umap_fig
except Exception as e:
log_submission(file.name, 0, start, status = f"error: {str(e)}")
print_recent_logs()
raise e
def search_text(query: str):
"""
Search for a given query in the vector DB.
"""
query_emb = embedder.embed_text(query)
results = vector_db.search(query_emb, top_k = 5)
return "\n\n".join(f"[{r['id']}]: {r['text']}" for r in results)
# Gradio UI
with gr.Blocks() as demo:
title_html = gr.HTML("<center><h1>🇰🇿 SemanticDala</h1><h2>Қазақтың семантикалық платформасы</h2><h3>Kazakh Semantic Platform</h3></center>")
with gr.Tab("📁 Жүктеп салу және өңдеу / Upload and Process"):
with gr.Row():
file_input = gr.File(label = "PDF немесе TXT жүктеңіз / Upload PDF or TXT", file_types = [".pdf", ".txt"])
process_btn = gr.Button("Процесс файлы / Process File", scale = 1)
translit_output = gr.Dataframe(
headers = ["Мәтін / Text", "Тақырып идентификаторы / Topic ID"],
label = "Транслитерацияланған үзінділер + Тақырыптар / Transliterated Chunks + Topics"
)
topic_label_table = gr.Dataframe(
headers = ["Тақырып идентификаторы / Topic ID", "Белгі / Label"],
label = "Тақырып белгілері / Topic Labels"
)
with gr.Row(equal_height = True):
with gr.Column(scale = 1):
plot_output = gr.Plot(label = "Негізгі тақырыптар / Top Topics")
with gr.Column(scale = 1):
umap_output = gr.Plot(label = "UMAP проекциясы / UMAP Topic Projection")
with gr.Tab("🔍 Семантикалық іздеу / Semantic Search"):
with gr.Row():
search_box = gr.Textbox(label = "Сұрау / Query", placeholder = "мысалы / e.g., Qazaqstan tarihy", lines = 1, scale = 5)
search_btn = gr.Button("Іздеу / Search", scale = 1)
search_results = gr.Textbox(label = "Нәтижелер / Top Results", lines = 6, interactive = False)
# Bind callbacks
process_btn.click(
fn = process_file,
inputs = file_input,
outputs = [translit_output, plot_output, topic_label_table, umap_output]
)
search_btn.click(fn = search_text, inputs = search_box, outputs = search_results)
# Launch
if __name__ == "__main__":
demo.launch()
|