Spaces:
Sleeping
Sleeping
Commit
·
cee942f
1
Parent(s):
9d320f1
Basic anonymised logging utility to keep track of app usage
Browse files
app.py
CHANGED
@@ -1,6 +1,11 @@
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
from src.db.vector_store import VectorStore
|
|
|
4 |
from src.modelling.topic_model import TopicModeller
|
5 |
from src.modelling.transliterate import DalaTransliterator
|
6 |
from src.utils.data_utils import (
|
@@ -21,6 +26,42 @@ vector_db = VectorStore()
|
|
21 |
topic_modeller = TopicModeller()
|
22 |
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
def extract_text(file: Any) -> str:
|
25 |
"""
|
26 |
Try multiple PDF extraction strategies, with fallback to OCR if necessary.
|
@@ -46,32 +87,43 @@ def process_file(file: Any) -> Tuple[List[Tuple[str, int]], Any, Any]:
|
|
46 |
Main file processing function, which will also chunk, transliterate and cluster
|
47 |
the file contents, as well as plot the clusters.
|
48 |
"""
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
|
61 |
-
|
62 |
|
63 |
-
|
64 |
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
|
69 |
-
|
|
|
|
|
70 |
|
71 |
-
|
72 |
-
|
73 |
|
74 |
-
|
75 |
|
76 |
|
77 |
def search_text(query: str):
|
@@ -84,19 +136,8 @@ def search_text(query: str):
|
|
84 |
return "\n\n".join(f"[{r['id']}]: {r['text']}" for r in results)
|
85 |
|
86 |
|
87 |
-
# Custom CSS
|
88 |
-
page_css = """
|
89 |
-
p {
|
90 |
-
font-size: 18px;
|
91 |
-
}
|
92 |
-
|
93 |
-
.lang_btn {
|
94 |
-
width: 5%;
|
95 |
-
}
|
96 |
-
"""
|
97 |
-
|
98 |
# Gradio UI
|
99 |
-
with gr.Blocks(
|
100 |
title_html = gr.HTML("<center><h1>🇰🇿 SemanticDala</h1><h2>Қазақтың семантикалық платформасы</h2><h3>Kazakh Semantic Platform</h3></center>")
|
101 |
|
102 |
with gr.Tab("📁 Жүктеп салу және өңдеу / Upload and Process"):
|
|
|
1 |
+
import os
|
2 |
+
import csv
|
3 |
+
import time
|
4 |
+
import hashlib
|
5 |
import gradio as gr
|
6 |
+
from datetime import datetime
|
7 |
from src.db.vector_store import VectorStore
|
8 |
+
from src.modelling.embed import DalaEmbedder
|
9 |
from src.modelling.topic_model import TopicModeller
|
10 |
from src.modelling.transliterate import DalaTransliterator
|
11 |
from src.utils.data_utils import (
|
|
|
26 |
topic_modeller = TopicModeller()
|
27 |
|
28 |
|
29 |
+
def log_submission(filename: str, num_chunks: int, start_time: float, status: str, session_id: str = "anonymous") -> None:
|
30 |
+
"""
|
31 |
+
Basic logging utility to keep track of app usage.
|
32 |
+
"""
|
33 |
+
log_file = "semanticdala_log.csv"
|
34 |
+
end_time = time.time()
|
35 |
+
duration = round(end_time - start_time, 2)
|
36 |
+
|
37 |
+
# Anonymise filename for privacy
|
38 |
+
anonymized_name = hashlib.sha256(filename.encode()).hexdigest()[:10]
|
39 |
+
|
40 |
+
# Get file size in bytes
|
41 |
+
file_size = os.path.getsize(filename) if os.path.exists(filename) else 0
|
42 |
+
file_size_mb = round(file_size / (1024 * 1024), 2)
|
43 |
+
|
44 |
+
log_entry = {
|
45 |
+
"timestamp": datetime.utcnow().isoformat(),
|
46 |
+
"filename_hash": anonymized_name,
|
47 |
+
"file_size_mb": file_size_mb,
|
48 |
+
"num_chunks": num_chunks,
|
49 |
+
"processing_time_sec": duration,
|
50 |
+
"status": status,
|
51 |
+
"session_id": session_id
|
52 |
+
}
|
53 |
+
|
54 |
+
file_exists = os.path.isfile(log_file)
|
55 |
+
|
56 |
+
with open(log_file, mode = 'a', newline = "") as f:
|
57 |
+
writer = csv.DictWriter(f, fieldnames = log_entry.keys())
|
58 |
+
|
59 |
+
if not file_exists:
|
60 |
+
writer.writeheader()
|
61 |
+
|
62 |
+
writer.writerow(log_entry)
|
63 |
+
|
64 |
+
|
65 |
def extract_text(file: Any) -> str:
|
66 |
"""
|
67 |
Try multiple PDF extraction strategies, with fallback to OCR if necessary.
|
|
|
87 |
Main file processing function, which will also chunk, transliterate and cluster
|
88 |
the file contents, as well as plot the clusters.
|
89 |
"""
|
90 |
+
start = time.time()
|
91 |
+
|
92 |
+
try:
|
93 |
+
raw_text = extract_text(file)
|
94 |
+
chunks = chunk_text(raw_text)
|
95 |
|
96 |
+
# Deduplicate and embed embedding
|
97 |
+
translits = translit.batch_transliterate(chunks)
|
98 |
+
dedup_translits = deduplicate_chunks(translits, embedder)
|
99 |
+
embeddings = embedder.embed_batch(dedup_translits)
|
100 |
|
101 |
+
# Clear previous entries before adding
|
102 |
+
vector_db.index.reset()
|
103 |
+
vector_db.metadata = []
|
104 |
|
105 |
+
metadata = [{"id": f"{file.name}_chunk{i}", "text": t} for i, t in enumerate(dedup_translits)]
|
106 |
|
107 |
+
vector_db.add(embeddings, metadata)
|
108 |
|
109 |
+
# Topic modelling
|
110 |
+
topics, fig, topic_labels, umap_fig = topic_modeller.fit(translits, embeddings)
|
111 |
+
|
112 |
+
# Get a list of rows for topic labels
|
113 |
+
overview_table = [[k, v] for k, v in topic_labels.items()]
|
114 |
+
|
115 |
+
# Zip back transliterated text with topic IDs
|
116 |
+
annotated = list(zip(translits, topics))
|
117 |
|
118 |
+
# Log success
|
119 |
+
log_submission(file.name, len(chunks), start, status = "success")
|
120 |
+
|
121 |
+
return annotated, fig, overview_table, umap_fig
|
122 |
|
123 |
+
except Exception as e:
|
124 |
+
log_submission(file.name, 0, start, status = f"error: {str(e)}")
|
125 |
|
126 |
+
raise e
|
127 |
|
128 |
|
129 |
def search_text(query: str):
|
|
|
136 |
return "\n\n".join(f"[{r['id']}]: {r['text']}" for r in results)
|
137 |
|
138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
# Gradio UI
|
140 |
+
with gr.Blocks() as demo:
|
141 |
title_html = gr.HTML("<center><h1>🇰🇿 SemanticDala</h1><h2>Қазақтың семантикалық платформасы</h2><h3>Kazakh Semantic Platform</h3></center>")
|
142 |
|
143 |
with gr.Tab("📁 Жүктеп салу және өңдеу / Upload and Process"):
|