paddle-ocr-demo / app.py
codic's picture
try fixing the website and the qr --before was working
642c3ad verified
raw
history blame
5.74 kB
from paddleocr import PaddleOCR
from gliner import GLiNER
import json
from PIL import Image
import gradio as gr
import numpy as np
import cv2
import logging
import os
from pathlib import Path
import tempfile
import pandas as pd
import io
import re
import traceback
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Set up GLiNER environment variables
os.environ['GLINER_HOME'] = './gliner_models'
# Load GLiNER model
try:
logger.info("Loading GLiNER model...")
gliner_model = GLiNER.from_pretrained("urchade/gliner_large-v2.1")
except Exception as e:
logger.error("Failed to load GLiNER model")
raise e
# Helper functions
def get_random_color():
return tuple(np.random.randint(0, 256, 3).tolist()
def draw_ocr_bbox(image, boxes, colors):
for i in range(len(boxes)):
box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
image = cv2.polylines(np.array(image), [box], True, colors[i], 2)
return image
def scan_qr_code(image):
try:
image_np = np.array(image)
qr_detector = cv2.QRCodeDetector()
data, _, _ = qr_detector.detectAndDecode(image_np)
return data.strip() if data else None
except Exception as e:
logger.error(f"QR scan failed: {str(e)}")
return None
def extract_emails(text):
email_regex = r"\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b"
return re.findall(email_regex, text)
def extract_websites(text):
website_regex = r"(?:https?://)?(?:www\.)?[A-Za-z0-9-]+\.[A-Za-z]{2,}(?:/\S*)?"
matches = re.findall(website_regex, text)
return [m for m in matches if '@' not in m]
def clean_phone_number(phone):
return re.sub(r"[^\d+]", "", phone)
# Main inference function
def inference(img: Image.Image, confidence):
try:
# Initialize PaddleOCR
ocr = PaddleOCR(use_angle_cls=True, lang='en', use_gpu=False,
det_model_dir='./models/det/en',
cls_model_dir='./models/cls/en',
rec_model_dir='./models/rec/en')
# OCR Processing
img_np = np.array(img)
result = ocr.ocr(img_np, cls=True)[0]
ocr_texts = [line[1][0] for line in result]
ocr_text = " ".join(ocr_texts)
# Entity Extraction
labels = ["person name", "company name", "job title",
"phone number", "email address", "physical address",
"website url"]
entities = gliner_model.predict_entities(ocr_text, labels, threshold=confidence, flat_ner=True)
results = {
"Person Name": [],
"Company Name": [],
"Job Title": [],
"Phone Number": [],
"Email Address": [],
"Physical Address": [],
"Website Url": [],
"QR Code": []
}
# Process GLiNER results
for entity in entities:
label = entity["label"].title().replace(" ", "")
if label == "PhoneNumber":
cleaned = clean_phone_number(entity["text"])
if cleaned: results["Phone Number"].append(cleaned)
elif label == "EmailAddress":
results["Email Address"].append(entity["text"].lower())
elif label == "WebsiteUrl":
results["Website Url"].append(entity["text"].lower())
elif label in results:
results[label].append(entity["text"])
# Regex fallbacks
if not results["Email Address"]:
results["Email Address"] = extract_emails(ocr_text)
if not results["Website Url"]:
results["Website Url"] = extract_websites(ocr_text)
# Phone number validation
phone_numbers = []
for text in ocr_texts:
numbers = re.findall(r'(?:\+?[0-9]\s?[0-9]+)+', text)
phone_numbers.extend([clean_phone_number(n) for n in numbers])
results["Phone Number"] = list(set(phone_numbers + results["Phone Number"]))
# QR Code handling
qr_data = scan_qr_code(img)
if qr_data:
results["QR Code"] = [qr_data]
# Create CSV
csv_data = {k: "; ".join(v) for k, v in results.items() if v}
csv_io = io.BytesIO()
pd.DataFrame([csv_data]).to_csv(csv_io, index=False)
csv_io.seek(0)
with tempfile.NamedTemporaryFile(suffix=".csv", delete=False, mode="wb") as tmp_file:
tmp_file.write(csv_io.getvalue())
csv_path = tmp_file.name
return ocr_text, csv_data, csv_path, ""
except Exception as e:
logger.error(f"Processing failed: {traceback.format_exc()}")
return "", {}, None, f"Error: {str(e)}\n{traceback.format_exc()}"
# Gradio Interface
title = 'Enhanced Business Card Parser'
description = 'Extracts entities with combined AI and regex validation, including QR codes'
examples = [
['example_imgs/example.jpg', 0.4],
['example_imgs/demo003.jpeg', 0.5],
]
css = """.output_image, .input_image {height: 40rem !important; width: 100% !important;}
.gr-interface {max-width: 800px !important;}"""
if __name__ == '__main__':
demo = gr.Interface(
inference,
[gr.Image(type='pil', label='Upload Business Card'),
gr.Slider(0.1, 1, 0.4, step=0.1, label='Confidence Threshold')],
[gr.Textbox(label="OCR Result"),
gr.JSON(label="Structured Data"),
gr.File(label="Download CSV"),
gr.Textbox(label="Error Log")],
title=title,
description=description,
examples=examples,
css=css,
cache_examples=True
)
demo.queue(max_size=20)
demo.launch()