Spaces:
Sleeping
Sleeping
File size: 5,742 Bytes
70b98b2 6bba885 70b98b2 6bba885 24a8aeb 642c3ad 6bba885 24a8aeb 642c3ad 6bba885 70b98b2 642c3ad 70b98b2 642c3ad 70b98b2 6bba885 70b98b2 6bba885 642c3ad 6bba885 642c3ad 6bba885 642c3ad 6bba885 642c3ad 6bba885 642c3ad 6bba885 642c3ad 6bba885 642c3ad 6bba885 642c3ad 6bba885 642c3ad 6bba885 642c3ad 6bba885 642c3ad 6bba885 642c3ad 6bba885 642c3ad 6bba885 642c3ad 6bba885 642c3ad 6bba885 70b98b2 642c3ad 70b98b2 642c3ad 70b98b2 642c3ad 70b98b2 631b608 6bba885 642c3ad 6bba885 642c3ad 631b608 6bba885 70b98b2 642c3ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
from paddleocr import PaddleOCR
from gliner import GLiNER
import json
from PIL import Image
import gradio as gr
import numpy as np
import cv2
import logging
import os
from pathlib import Path
import tempfile
import pandas as pd
import io
import re
import traceback
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Set up GLiNER environment variables
os.environ['GLINER_HOME'] = './gliner_models'
# Load GLiNER model
try:
logger.info("Loading GLiNER model...")
gliner_model = GLiNER.from_pretrained("urchade/gliner_large-v2.1")
except Exception as e:
logger.error("Failed to load GLiNER model")
raise e
# Helper functions
def get_random_color():
return tuple(np.random.randint(0, 256, 3).tolist()
def draw_ocr_bbox(image, boxes, colors):
for i in range(len(boxes)):
box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
image = cv2.polylines(np.array(image), [box], True, colors[i], 2)
return image
def scan_qr_code(image):
try:
image_np = np.array(image)
qr_detector = cv2.QRCodeDetector()
data, _, _ = qr_detector.detectAndDecode(image_np)
return data.strip() if data else None
except Exception as e:
logger.error(f"QR scan failed: {str(e)}")
return None
def extract_emails(text):
email_regex = r"\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b"
return re.findall(email_regex, text)
def extract_websites(text):
website_regex = r"(?:https?://)?(?:www\.)?[A-Za-z0-9-]+\.[A-Za-z]{2,}(?:/\S*)?"
matches = re.findall(website_regex, text)
return [m for m in matches if '@' not in m]
def clean_phone_number(phone):
return re.sub(r"[^\d+]", "", phone)
# Main inference function
def inference(img: Image.Image, confidence):
try:
# Initialize PaddleOCR
ocr = PaddleOCR(use_angle_cls=True, lang='en', use_gpu=False,
det_model_dir='./models/det/en',
cls_model_dir='./models/cls/en',
rec_model_dir='./models/rec/en')
# OCR Processing
img_np = np.array(img)
result = ocr.ocr(img_np, cls=True)[0]
ocr_texts = [line[1][0] for line in result]
ocr_text = " ".join(ocr_texts)
# Entity Extraction
labels = ["person name", "company name", "job title",
"phone number", "email address", "physical address",
"website url"]
entities = gliner_model.predict_entities(ocr_text, labels, threshold=confidence, flat_ner=True)
results = {
"Person Name": [],
"Company Name": [],
"Job Title": [],
"Phone Number": [],
"Email Address": [],
"Physical Address": [],
"Website Url": [],
"QR Code": []
}
# Process GLiNER results
for entity in entities:
label = entity["label"].title().replace(" ", "")
if label == "PhoneNumber":
cleaned = clean_phone_number(entity["text"])
if cleaned: results["Phone Number"].append(cleaned)
elif label == "EmailAddress":
results["Email Address"].append(entity["text"].lower())
elif label == "WebsiteUrl":
results["Website Url"].append(entity["text"].lower())
elif label in results:
results[label].append(entity["text"])
# Regex fallbacks
if not results["Email Address"]:
results["Email Address"] = extract_emails(ocr_text)
if not results["Website Url"]:
results["Website Url"] = extract_websites(ocr_text)
# Phone number validation
phone_numbers = []
for text in ocr_texts:
numbers = re.findall(r'(?:\+?[0-9]\s?[0-9]+)+', text)
phone_numbers.extend([clean_phone_number(n) for n in numbers])
results["Phone Number"] = list(set(phone_numbers + results["Phone Number"]))
# QR Code handling
qr_data = scan_qr_code(img)
if qr_data:
results["QR Code"] = [qr_data]
# Create CSV
csv_data = {k: "; ".join(v) for k, v in results.items() if v}
csv_io = io.BytesIO()
pd.DataFrame([csv_data]).to_csv(csv_io, index=False)
csv_io.seek(0)
with tempfile.NamedTemporaryFile(suffix=".csv", delete=False, mode="wb") as tmp_file:
tmp_file.write(csv_io.getvalue())
csv_path = tmp_file.name
return ocr_text, csv_data, csv_path, ""
except Exception as e:
logger.error(f"Processing failed: {traceback.format_exc()}")
return "", {}, None, f"Error: {str(e)}\n{traceback.format_exc()}"
# Gradio Interface
title = 'Enhanced Business Card Parser'
description = 'Extracts entities with combined AI and regex validation, including QR codes'
examples = [
['example_imgs/example.jpg', 0.4],
['example_imgs/demo003.jpeg', 0.5],
]
css = """.output_image, .input_image {height: 40rem !important; width: 100% !important;}
.gr-interface {max-width: 800px !important;}"""
if __name__ == '__main__':
demo = gr.Interface(
inference,
[gr.Image(type='pil', label='Upload Business Card'),
gr.Slider(0.1, 1, 0.4, step=0.1, label='Confidence Threshold')],
[gr.Textbox(label="OCR Result"),
gr.JSON(label="Structured Data"),
gr.File(label="Download CSV"),
gr.Textbox(label="Error Log")],
title=title,
description=description,
examples=examples,
css=css,
cache_examples=True
)
demo.queue(max_size=20)
demo.launch() |