File size: 16,848 Bytes
3082988 1045f2f 3082988 ca5eff5 3082988 ae88d11 0feee88 3082988 cb51c2a 3082988 ad85e45 3082988 ad85e45 98697be ad85e45 ae88d11 ad85e45 3082988 ae74b40 ae88d11 0f5901a ad85e45 1045f2f ad85e45 ed31199 ae88d11 ad85e45 ed31199 9bcc136 ad85e45 ae88d11 69f55cc ae88d11 69f55cc ad85e45 69f55cc ad85e45 3082988 3baef55 3082988 9bcc136 3082988 9bcc136 3082988 3baef55 3082988 3baef55 3082988 06204b4 ae88d11 65c5a55 ae88d11 06204b4 69f55cc 06204b4 dfbaf58 06204b4 3082988 ae88d11 3082988 ca8cbdc 53b7ea4 3082988 be02948 ad85e45 3082988 dfa0c21 ae88d11 1382d6a dfa0c21 ae74b40 c3f6e3b 3082988 3baef55 ad85e45 3baef55 da6067d f68c4e9 9bcc136 3baef55 3082988 ae74b40 06204b4 d61bf9b 06204b4 3082988 06204b4 ae74b40 06204b4 3082988 ae74b40 bc96a89 ae74b40 bc96a89 4ac5107 3082988 ae74b40 3082988 b9f41e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
from langchain_chroma import Chroma
from langchain_huggingface import HuggingFaceEmbeddings
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
from openpyxl import load_workbook
import pandas as pd
import gradio as gr
import numpy as np
# Chroma DB 로드
###기본(BGE)
model_huggingface_ori = HuggingFaceEmbeddings(model_name='BAAI/bge-m3')
persist_directory_ori = './chroma_kpi_250416'
kpi_pool_ori = Chroma(persist_directory=persist_directory_ori, embedding_function=model_huggingface_ori)
print(kpi_pool_ori._collection.count())
persist_directory_ori2 = './chroma_ncs_241230'
ncs_db_ori = Chroma(persist_directory=persist_directory_ori2, embedding_function=model_huggingface_ori)
print(ncs_db_ori._collection.count())
###
model_huggingface = HuggingFaceEmbeddings(model_name='snunlp/KR-SBERT-V40K-klueNLI-augSTS')
persist_directory1 = './chroma_kpi_250528_SBERT'
kpi_pool = Chroma(persist_directory=persist_directory1, embedding_function=model_huggingface)
print(kpi_pool._collection.count())
persist_directory2 = './chroma_NCS_SBERT_snunlp'
ncs_db = Chroma(persist_directory=persist_directory2, embedding_function=model_huggingface)
print(ncs_db._collection.count())
####
model_huggingface2 = HuggingFaceEmbeddings(model_name='jhgan/ko-sbert-sts')
persist_directory_jhgan1 = './chroma_kpi_250528_SBERTjhgan'
kpi_pool2 = Chroma(persist_directory=persist_directory_jhgan1, embedding_function=model_huggingface2)
print(kpi_pool2._collection.count())
persist_directory_jhgan2 = './chroma_NCS_SBERT'
ncs_db2 = Chroma(persist_directory=persist_directory_jhgan2, embedding_function=model_huggingface2)
print(ncs_db2._collection.count())
def search_unit(unit_query, mode):
if mode == "BGE":
results = ncs_db_ori.similarity_search_with_relevance_scores(unit_query, k=7)
if mode == "SBERT-snunlp":
results = ncs_db.similarity_search_with_relevance_scores(unit_query, k=7)
else:
results = ncs_db2.similarity_search_with_relevance_scores(unit_query, k=7)
# 검색 결과 텍스트 포맷팅
text = ""
for i, doc in enumerate(results):
# 텍스트와 메타데이터 처리
unit = doc[0].page_content.replace(", ", " / ")
job_name = doc[0].metadata['세분류코드명']
# 코드 계층 처리
code = [
doc[0].metadata['대분류코드명'],
doc[0].metadata['중분류코드명'],
doc[0].metadata['소분류코드명']
]
code_str = " > ".join(code)
# 텍스트 포맷팅
similarity = round(doc[1], 3)
text += f"""
<span style="font-size: 18px;">**[{i+1}] {job_name}**</span>
<span style="font-size: 13px;"> | {code_str} | similarity {similarity} </span>
<br> {unit} <br>
"""
return text
def search_unit_all(unit_query):
text_bge = search_unit(unit_query, "BGE")
text_snu = search_unit(unit_query, "SBERT-snunlp")
text_jh = search_unit(unit_query, "SBERT-jhgan")
return text_bge, text_snu, text_jh
downsample_model_ori = SentenceTransformer('BAAI/bge-m3')
downsample_model = SentenceTransformer('snunlp/KR-SBERT-V40K-klueNLI-augSTS')
downsample_model_2 = SentenceTransformer('jhgan/ko-sbert-sts')
def filter_semantically_similar_texts_by_embedding(df, mode, embedding_field='embedding_input', similarity_threshold=0.8):
texts = df[embedding_field].tolist()
# 텍스트를 임베딩
if mode == "BGE":
embeddings = downsample_model_ori.encode(texts)
elif mode == "SBERT-snunlp":
embeddings = downsample_model.encode(texts)
else:
embeddings = downsample_model_2.encode(texts)
# 코사인 유사도 행렬 계산
similarity_matrix = cosine_similarity(embeddings)
np.fill_diagonal(similarity_matrix, 0)
# 유사도가 threshold 이상인 항목 필터링
filtered_indices = []
excluded_indices = set()
for i in range(len(texts)):
if i not in excluded_indices:
filtered_indices.append(i)
similar_indices = np.where(similarity_matrix[i] > similarity_threshold)[0]
excluded_indices.update(similar_indices)
return df.iloc[filtered_indices].reset_index(drop=True)
def search_kpi(kpi_query, kpi_count, mode):
if mode == "BGE":
print("BGE 검색 시작")
results = kpi_pool_ori.similarity_search_with_relevance_scores(kpi_query, k=50)
elif mode == "SBERT-snunlp":
print("SBERT-snunlp 검색 시작")
results = kpi_pool.similarity_search_with_relevance_scores(kpi_query, k=50)
else:
print("SBERT-jhgan 검색 시작")
results = kpi_pool2.similarity_search_with_relevance_scores(kpi_query, k=50)
# 메타데이터 + 점수 추출
records = [
{**doc.metadata, '유사도점수': score}
for doc, score in results
]
# DataFrame으로 변환
df = pd.DataFrame(records)
df['카테고리'] = df['BSC 관점'] + " > " + df['전략방향']
df = df.drop_duplicates(subset=['정의', '산식']).head(15)
df = df.iloc[:kpi_count]
# 카테고리 생성 (BSC 관점 + 전략방향)
df['카테고리'] = df['BSC 관점'] + " > " + df['전략방향']
visible_df = df[['지표명', '산식', '비고', '카테고리']].copy()
kpi_list = list(range(1, len(visible_df) + 1))
kpi_df = df[['지표명', '정의', '산식', '유형', '비고', 'BSC 관점', '전략방향', '전략과제']].copy()
return gr.update(visible=True), gr.update(choices=kpi_list), visible_df, kpi_df, kpi_list, gr.update(visible=False)
def search_kpi_one(kpi_query, kpi_count, mode):
if mode == "BGE":
print("BGE 검색 시작")
results = kpi_pool_ori.similarity_search_with_relevance_scores(kpi_query, k=50)
elif mode == "SBERT-snunlp":
print("SBERT-snunlp 검색 시작")
results = kpi_pool.similarity_search_with_relevance_scores(kpi_query, k=50)
else:
print("SBERT-jhgan 검색 시작")
results = kpi_pool2.similarity_search_with_relevance_scores(kpi_query, k=50)
# 메타데이터 + 점수 추출
records = [
{**doc.metadata, '유사도점수': score}
for doc, score in results
]
# DataFrame으로 변환
df = pd.DataFrame(records)
df['카테고리'] = df['BSC 관점'] + " > " + df['전략방향']
df = df.drop_duplicates(subset=['정의', '산식']).head(15)
df = df.iloc[:kpi_count]
# 카테고리 생성 (BSC 관점 + 전략방향)
df['카테고리'] = df['BSC 관점'] + " > " + df['전략방향']
visible_df = df[['지표명', '산식', '비고', '카테고리']].copy()
kpi_list = list(range(1, len(visible_df) + 1))
kpi_df = df[['지표명', '정의', '산식', '유형', '비고', 'BSC 관점', '전략방향', '전략과제']].copy()
return visible_df, kpi_df, kpi_list
def search_kpi_all_models(kpi_query, kpi_count):
print("함수 호출, 테이블 생성 시작")
# 각 모델별 결과
visible_bge, kpi_bge, list_bge = search_kpi_one(kpi_query, kpi_count, "BGE")
visible_sn, kpi_sn, list_sn = search_kpi_one(kpi_query, kpi_count, "SBERT-snunlp")
visible_jh, kpi_jh, list_jh = search_kpi_one(kpi_query, kpi_count, "SBERT-jhgan")
print("함수 종료")
visible_df = [visible_bge, visible_sn, visible_jh]
kpi_df = [kpi_bge, kpi_sn, kpi_jh]
kpi_list = [list_bge, list_sn, list_jh]
return (
gr.update(visible=True),
visible_df[0], # kpi_table1
visible_df[1], # kpi_table2
visible_df[2], # kpi_table3
# kpi_df,
gr.update(visible=False)
)
# 셀 주소와 값을 매핑한 딕셔너리 생성
def make_excel_table(dataframe, start_cell):
table_dict = {}
# 시작 셀 좌표 계산
start_row = int(''.join(filter(str.isdigit, start_cell))) # 시작 행 (숫자)
start_col = ord(start_cell[0].upper()) - ord('A') + 1 # 시작 열 (문자 -> 숫자)
# 데이터프레임 반복 처리
for row_index, row in enumerate(dataframe.itertuples(index=False), start=start_row):
for col_index, value in enumerate(row, start=start_col):
# 셀 주소 계산 (예: B5, C5, ...)
cell = f"{chr(ord('A') + col_index - 1)}{row_index}"
table_dict[cell] = value
return table_dict
# 다운로드 파일 생성 함수
def generate_excel(df, kpi_list, kpi_query):
# 인덱스(-1 보정)로 DataFrame 필터링
filtered_df = df.iloc[[int(i) - 1 for i in kpi_list]] if kpi_list else pd.DataFrame(columns=df.columns)
# 엑셀 파일 열기
file_path = "./template.xlsx"
workbook = load_workbook(file_path)
sheet = workbook.active
update_values = make_excel_table(filtered_df, 'B4')
for cell, value in update_values.items():
sheet[cell].value = value
# 워크시트 기본 확대 수준 설정(%)
sheet.sheet_view.zoomScaleNormal = 85
# 파일 저장
output_file = f"KPI_POOL_{kpi_query}.xlsx"
workbook.save(output_file)
return gr.update(value=output_file, visible=True)
def toggle_selection(current_selection, kpi_list):
if set(current_selection) == set(kpi_list): # 이미 전체 선택된 경우
return []
else: # 전체 선택 안 된 경우
return kpi_list
css = """
/* 데이터프레임 스타일 */
.gradio-container table {
table-layout: fixed;
width: 100%;
}
.gradio-container td{
white-space: nowrap !important;
overflow-x: auto !important;
text-align: left;
font-size: 13px;
letter-spacing: -1px !important;
}
/* 헤더 기본 스타일 */
.gradio-container th[aria-sort]::after {
visibility: hidden !important; /* 아이콘만 감춤 */
}
.gradio-container th .header-content {
justify-content: center !important;
text-align: center;
font-size: 13px;
letter-spacing: -1px !important;
}
.gradio-container th span {
text-align: center !important;
display: block !important;
width: 100%;
}
.v_check { padding-top: 39px !important;
margin-right: 0px !important;
padding-right: 0px !important;
}
.v_check div { display: block !important; }
.v_check label {
max-width: 100%; /* 전체 너비 유지 */
padding: 3px; /* 내부 여백 조정 */
margin-bottom: 7.2px; /* 라벨 간 간격 설정 */
border: 1px solid transparent !important;
letter-spacing: -1px !important; /* 자간 좁게 설정*/
justify-content: center;
}
div.svelte-1nguped {
background: transparent !important;
border: none !important;
}
.left-padding { padding-left: 43px !important; /* 왼쪽 패딩 추가 */ }
.custom-markdown h3 {
font-size: 18px; /* 본문 및 목록 글자 크기 */
}
.custom-markdown blockquote {
margin-bottom: 8px !important;
}
.custom-markdown p, .custom-markdown li {
margin-top: 8px !important;
font-size: 15px; /* 본문 및 목록 글자 크기 */
line-height: 1.5;
}
.custom-markdown a {
font-size: 15px;
color: #000000;
}
"""
guide = """> ### 저작권 및 유의사항 안내
- 본 앱은 시앤피컨설팅이 개발한 KPI POOL 검색 도구로, AI 기반 추천 결과는 참고용으로 제공됩니다.
- AI 기반 추천 알고리즘은 전문 컨설팅을 대체할 수 없으며, 반드시 조직의 전략, 평가 목적, 데이터 수집 가능성 등과의 적합성 검토가 필요합니다.
- KPI 설정과 적용에 대한 개별 맞춤 검토는 시앤피컨설팅의 전문 컨설턴트에게 문의해 주세요.
<br><br>
> ### Contact Us
시앤피컨설팅그룹 일터혁신본부 | Tel. 02-6257-1448 | http://www.cnp.re.kr | hpw@cnp.re.kr
"""
empty_df = pd.DataFrame(columns=["지표명", "산식", "비고", "카테고리"])
with gr.Blocks(css=css) as demo:
df_state = gr.State()
check_state = gr.State()
with gr.Row():
gr.Markdown("""
- BGE : 기존 검색방법. 키워드 검색 최적화.
- SBERT-snunlp : 의미 중심 검색.
- SBERT-jhgan : 유사도 중심 검색.
""")
#mode = gr.Dropdown(choices={"BGE","SBERT-snunlp","SBERT-jhgan"}, label="모델을 선택하세요")
gr.Markdown(" ")
with gr.Tab("KPI Pool 검색"):
with gr.Column(elem_classes="left-padding"):
with gr.Row():
kpi_query = gr.Textbox(scale=30, submit_btn=True,
label= "성과평가를 진행할 [핵심업무 or 핵심성공요인]을 입력해주세요😊! (검색 키워드는 직무기술서 또는 NCS 능력단위 참고)",
placeholder="예: 자금조달 or 자금조달의 적절성")
kpi_count = gr.Slider(label="KPI 출력 개수", value = 15, minimum=5, maximum=15, step=1, scale=7)
copyright = gr.Markdown(guide, visible=True, elem_classes="custom-markdown")
with gr.Column(visible=False) as output_area:
with gr.Group():
with gr.Row():
#kpi_checkbox = gr.CheckboxGroup(choices=[], interactive=True, elem_classes="v_check", container=False, min_width=5, scale=1)
with gr.Group():
gr.Markdown("BGE")
kpi_table1 = gr.Dataframe(
scale=33, value=[], show_label=False, max_height=650,
column_widths=[80, 180, 160, 70],
datatype=["str", "str", "str", "str"]
)
with gr.Group():
gr.Markdown("SBERT-snunlp")
kpi_table2 = gr.Dataframe(
scale=33, value=[], show_label=False, max_height=650,
column_widths=[80, 180, 160, 70],
datatype=["str", "str", "str", "str"]
)
with gr.Group():
gr.Markdown("SBERT-jhgan")
kpi_table3 = gr.Dataframe(
scale=33, value=[], show_label=False, max_height=650,
column_widths=[80, 180, 160, 70],
datatype=["str", "str", "str", "str"]
)
with gr.Row():
gr.Column(scale=2)
select_button = gr.Button("All")
download_button = gr.Button("Download")
clear_button = gr.Button("Clear")
gr.Column(scale=2)
file_download = gr.Files(label="Download", interactive=False, visible=False)
#kpi_query.submit(search_kpi, inputs = [kpi_query, kpi_count, mode], outputs = [output_area, kpi_checkbox, kpi_table, df_state, check_state, copyright])
kpi_query.submit(search_kpi_all_models, inputs = [kpi_query, kpi_count], outputs = [output_area, kpi_table1, kpi_table2, kpi_table3, copyright])
#select_button.click(fn=toggle_selection, inputs=[kpi_checkbox, check_state], outputs=kpi_checkbox, show_progress='hidden')
#download_button.click(
# generate_excel,
# inputs=[df_state, kpi_checkbox, kpi_query],
# outputs=[file_download]
#)
clear_button.click(
fn=lambda: (None, None, gr.update(visible=False),
gr.update(choices=[], value=[]), gr.update(value=[]),gr.update(value=[]),gr.update(value=[]),
gr.update(value=None, visible=False), gr.update(visible=True)),
outputs=[df_state, kpi_query, output_area,
kpi_checkbox, kpi_table1, kpi_table2, kpi_table3,
file_download, copyright],
show_progress='hidden'
)
with gr.Tab("[참고] NCS 능력단위"):
unit_query = gr.Textbox(label="업종 or 직종 + 직무명을 입력하세요😊", scale=1, submit_btn=True,
placeholder="예: 의약품 법률자문, 공공행정 경영기획, 재무회계 자금")
with gr.Row():
with gr.Group():
gr.Markdown("BGE")
unit_result1 = gr.Markdown()
with gr.Group():
gr.Markdown("SBERT-snunlp")
unit_result2 = gr.Markdown()
with gr.Group():
gr.Markdown("SBERT-jhgan")
unit_result3 = gr.Markdown()
#unit_query.submit(search_unit, inputs=[unit_query, mode], outputs=[unit_result])
unit_query.submit(search_unit_all, inputs=unit_query, outputs=[unit_result1, unit_result2, unit_result3])
demo.launch(debug=True) |