Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
from langchain_chroma import Chroma
|
2 |
from langchain_huggingface import HuggingFaceEmbeddings
|
|
|
|
|
3 |
from openpyxl import load_workbook
|
4 |
import pandas as pd
|
5 |
import gradio as gr
|
6 |
-
import math
|
7 |
|
8 |
# Chroma DB 로드
|
9 |
model_huggingface = HuggingFaceEmbeddings(model_name='BAAI/bge-m3')
|
@@ -43,6 +44,8 @@ def search_unit(unit_query):
|
|
43 |
"""
|
44 |
return text
|
45 |
|
|
|
|
|
46 |
def filter_semantically_similar_texts_by_embedding(df, embedding_field='embedding_input', similarity_threshold=0.8):
|
47 |
texts = df[embedding_field].tolist()
|
48 |
|
|
|
1 |
from langchain_chroma import Chroma
|
2 |
from langchain_huggingface import HuggingFaceEmbeddings
|
3 |
+
from sentence_transformers import SentenceTransformer
|
4 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
from openpyxl import load_workbook
|
6 |
import pandas as pd
|
7 |
import gradio as gr
|
|
|
8 |
|
9 |
# Chroma DB 로드
|
10 |
model_huggingface = HuggingFaceEmbeddings(model_name='BAAI/bge-m3')
|
|
|
44 |
"""
|
45 |
return text
|
46 |
|
47 |
+
downsample_model = SentenceTransformer('BAAI/bge-m3')
|
48 |
+
|
49 |
def filter_semantically_similar_texts_by_embedding(df, embedding_field='embedding_input', similarity_threshold=0.8):
|
50 |
texts = df[embedding_field].tolist()
|
51 |
|