File size: 7,526 Bytes
146869e
 
07348d6
 
146869e
f98f73c
07348d6
146869e
 
f98f73c
146869e
 
 
 
 
 
2f97b32
146869e
f98f73c
146869e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f98f73c
146869e
 
 
 
 
 
 
 
 
 
 
 
 
07348d6
 
146869e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08d9d5b
146869e
 
 
 
 
 
 
 
 
08d9d5b
146869e
 
 
 
 
 
 
 
08d9d5b
146869e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08d9d5b
146869e
08d9d5b
 
 
146869e
 
 
07348d6
146869e
08d9d5b
146869e
08d9d5b
146869e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07348d6
146869e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07348d6
146869e
 
f98f73c
146869e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import os
import time
import gc
import threading
from datetime import datetime
import gradio as gr
import torch
from transformers import pipeline, TextIteratorStreamer
import spaces  # Import spaces early to enable ZeroGPU support

# ------------------------------
# Global Cancellation Event
# ------------------------------
cancel_event = threading.Event()

MODELS = {
    "MedGemma": {"repo_id": "unsloth/medgemma-27b-text-it", "description": "Med Gemma for medical chat."}
}

# Global cache for pipelines to avoid re-loading.
PIPELINES = {}

def load_pipeline(model_name):
    """
    Load and cache a transformers pipeline for text generation.
    Tries bfloat16, falls back to float16 or float32 if unsupported.
    """
    global PIPELINES
    if model_name in PIPELINES:
        return PIPELINES[model_name]
    repo = MODELS[model_name]["repo_id"]
    for dtype in (torch.bfloat16, torch.float16, torch.float32):
        try:
            pipe = pipeline(
                task="text-generation",
                model=repo,
                tokenizer=repo,
                trust_remote_code=True,
                torch_dtype=dtype,
                device_map="auto"
            )
            PIPELINES[model_name] = pipe
            return pipe
        except Exception:
            continue
    # Final fallback
    pipe = pipeline(
        task="text-generation",
        model=repo,
        tokenizer=repo,
        trust_remote_code=True,
        device_map="auto"
    )
    PIPELINES[model_name] = pipe
    return pipe

def format_conversation(history, system_prompt):
    """
    Flatten chat history and system prompt into a single string.
    """
    prompt = system_prompt.strip() + "\n"
    
    for user_msg, assistant_msg in history:
        prompt += "User: " + user_msg.strip() + "\n"
        if assistant_msg:  # might be None or empty
            prompt += "Assistant: " + assistant_msg.strip() + "\n"
    
    prompt += "Assistant: "
    return prompt

# Function to get just the model name from the dropdown selection
def get_model_name(full_selection):
    return full_selection.split(" - ")[0]

# User input handling function
def user_input(user_message, history):
    return "", history + [(user_message, None)]

@spaces.GPU(duration=60)
def bot_response(history, system_prompt, model_selection, max_tokens, temperature, top_k, top_p, repetition_penalty):
    """
    Generate AI response to user input
    """
    cancel_event.clear()
    
    # Extract the latest user message
    user_message = history[-1][0]
    history_without_last = history[:-1]
    
    # Get model name from selection
    model_name = get_model_name(model_selection)
    
    # Format the conversation
    conversation = format_conversation(history_without_last, system_prompt)
    conversation += "User: " + user_message + "\nAssistant: "
    
    try:
        pipe = load_pipeline(model_name)
        response = pipe(
            conversation,
            max_new_tokens=max_tokens,
            temperature=temperature,
            top_k=top_k,
            top_p=top_p,
            repetition_penalty=repetition_penalty,
            return_full_text=False
        )[0]["generated_text"]
        
        # Update the last message pair with the response
        history[-1] = (user_message, response)
        return history
    except Exception as e:
        history[-1] = (user_message, f"Error: {e}")
        return history
    finally:
        gc.collect()

def get_default_system_prompt():
    today = datetime.now().strftime('%Y-%m-%d')
    return f"""You are a helpful medical assistant."""

def clear_chat():
    return []

# CSS for improved visual style
css = """
.gradio-container {
    background-color: #f5f7fb !important;
}
.medgemma-header {
    background: linear-gradient(90deg, #0099FF, #0066CC);
    padding: 20px;
    border-radius: 10px;
    margin-bottom: 20px;
    text-align: center;
    color: white;
    box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.medgemma-container {
    border-radius: 10px;
    box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
    background: white;
    padding: 20px;
    margin-bottom: 20px;
}
.controls-container {
    background: #f0f4fa;
    border-radius: 10px;
    padding: 15px;
    margin-bottom: 15px;
}
.model-select {
    border: 2px solid #0099FF !important;
    border-radius: 8px !important;
}
.button-primary {
    background-color: #0099FF !important;
    color: white !important;
}
.button-secondary {
    background-color: #6c757d !important;
    color: white !important;
}
.footer {
    text-align: center;
    margin-top: 20px;
    font-size: 0.8em;
    color: #666;
}
"""

# ------------------------------
# Gradio UI
# ------------------------------
with gr.Blocks(title="MedGemma Chat", css=css) as demo:
    gr.HTML("""
    <div class="medgemma-header">
        <h1>🤖 MedGemma Chat</h1>
        <p>Interact with Alibaba Cloud's MedGemma language models</p>
    </div>
    """)
    
    with gr.Row():
        with gr.Column(scale=3):
            with gr.Group(elem_classes="medgemma-container"):
                model_dd = gr.Dropdown(
                    label="Select MedGemma Model", 
                    choices=[f"{k} - {v['description']}" for k, v in MODELS.items()],
                    value=f"{list(MODELS.keys())[0]} - {MODELS[list(MODELS.keys())[0]]['description']}",
                    elem_classes="model-select"
                )
                
            with gr.Group(elem_classes="controls-container"):
                gr.Markdown("### ⚙️ Generation Parameters")
                sys_prompt = gr.Textbox(label="System Prompt", lines=5, value=get_default_system_prompt())
                with gr.Row():
                    max_tok = gr.Slider(64, 1024, value=512, step=32, label="Max Tokens")
                with gr.Row():
                    temp = gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature")
                    p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-P")
                with gr.Row():
                    k = gr.Slider(1, 100, value=40, step=1, label="Top-K")
                    rp = gr.Slider(1.0, 2.0, value=1.1, step=0.1, label="Repetition Penalty")
                
                clear_btn = gr.Button("Clear Chat", elem_classes="button-secondary")
                
        with gr.Column(scale=7):
            chatbot = gr.Chatbot()
            with gr.Row():
                txt = gr.Textbox(
                    show_label=False,
                    placeholder="Type your message here...",
                    lines=2
                )
                submit_btn = gr.Button("Send", variant="primary", elem_classes="button-primary")
            
    gr.HTML("""
    <div class="footer">
    </div>
    """)
    
    # Connect UI elements to functions
    submit_btn.click(
        user_input,
        inputs=[txt, chatbot],
        outputs=[txt, chatbot],
        queue=False
    ).then(
        bot_response,
        inputs=[chatbot, sys_prompt, model_dd, max_tok, temp, k, p, rp],
        outputs=chatbot,
        api_name="generate"
    )
    
    txt.submit(
        user_input,
        inputs=[txt, chatbot],
        outputs=[txt, chatbot],
        queue=False
    ).then(
        bot_response,
        inputs=[chatbot, sys_prompt, model_dd, max_tok, temp, k, p, rp],
        outputs=chatbot,
        api_name="generate"
    )
    
    clear_btn.click(
        clear_chat,
        outputs=[chatbot],
        queue=False
    )

if __name__ == "__main__":
    demo.launch()