Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,526 Bytes
146869e 07348d6 146869e f98f73c 07348d6 146869e f98f73c 146869e 2f97b32 146869e f98f73c 146869e f98f73c 146869e 07348d6 146869e 08d9d5b 146869e 08d9d5b 146869e 08d9d5b 146869e 08d9d5b 146869e 08d9d5b 146869e 07348d6 146869e 08d9d5b 146869e 08d9d5b 146869e 07348d6 146869e 07348d6 146869e f98f73c 146869e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import os
import time
import gc
import threading
from datetime import datetime
import gradio as gr
import torch
from transformers import pipeline, TextIteratorStreamer
import spaces # Import spaces early to enable ZeroGPU support
# ------------------------------
# Global Cancellation Event
# ------------------------------
cancel_event = threading.Event()
MODELS = {
"MedGemma": {"repo_id": "unsloth/medgemma-27b-text-it", "description": "Med Gemma for medical chat."}
}
# Global cache for pipelines to avoid re-loading.
PIPELINES = {}
def load_pipeline(model_name):
"""
Load and cache a transformers pipeline for text generation.
Tries bfloat16, falls back to float16 or float32 if unsupported.
"""
global PIPELINES
if model_name in PIPELINES:
return PIPELINES[model_name]
repo = MODELS[model_name]["repo_id"]
for dtype in (torch.bfloat16, torch.float16, torch.float32):
try:
pipe = pipeline(
task="text-generation",
model=repo,
tokenizer=repo,
trust_remote_code=True,
torch_dtype=dtype,
device_map="auto"
)
PIPELINES[model_name] = pipe
return pipe
except Exception:
continue
# Final fallback
pipe = pipeline(
task="text-generation",
model=repo,
tokenizer=repo,
trust_remote_code=True,
device_map="auto"
)
PIPELINES[model_name] = pipe
return pipe
def format_conversation(history, system_prompt):
"""
Flatten chat history and system prompt into a single string.
"""
prompt = system_prompt.strip() + "\n"
for user_msg, assistant_msg in history:
prompt += "User: " + user_msg.strip() + "\n"
if assistant_msg: # might be None or empty
prompt += "Assistant: " + assistant_msg.strip() + "\n"
prompt += "Assistant: "
return prompt
# Function to get just the model name from the dropdown selection
def get_model_name(full_selection):
return full_selection.split(" - ")[0]
# User input handling function
def user_input(user_message, history):
return "", history + [(user_message, None)]
@spaces.GPU(duration=60)
def bot_response(history, system_prompt, model_selection, max_tokens, temperature, top_k, top_p, repetition_penalty):
"""
Generate AI response to user input
"""
cancel_event.clear()
# Extract the latest user message
user_message = history[-1][0]
history_without_last = history[:-1]
# Get model name from selection
model_name = get_model_name(model_selection)
# Format the conversation
conversation = format_conversation(history_without_last, system_prompt)
conversation += "User: " + user_message + "\nAssistant: "
try:
pipe = load_pipeline(model_name)
response = pipe(
conversation,
max_new_tokens=max_tokens,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
return_full_text=False
)[0]["generated_text"]
# Update the last message pair with the response
history[-1] = (user_message, response)
return history
except Exception as e:
history[-1] = (user_message, f"Error: {e}")
return history
finally:
gc.collect()
def get_default_system_prompt():
today = datetime.now().strftime('%Y-%m-%d')
return f"""You are a helpful medical assistant."""
def clear_chat():
return []
# CSS for improved visual style
css = """
.gradio-container {
background-color: #f5f7fb !important;
}
.medgemma-header {
background: linear-gradient(90deg, #0099FF, #0066CC);
padding: 20px;
border-radius: 10px;
margin-bottom: 20px;
text-align: center;
color: white;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.medgemma-container {
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
background: white;
padding: 20px;
margin-bottom: 20px;
}
.controls-container {
background: #f0f4fa;
border-radius: 10px;
padding: 15px;
margin-bottom: 15px;
}
.model-select {
border: 2px solid #0099FF !important;
border-radius: 8px !important;
}
.button-primary {
background-color: #0099FF !important;
color: white !important;
}
.button-secondary {
background-color: #6c757d !important;
color: white !important;
}
.footer {
text-align: center;
margin-top: 20px;
font-size: 0.8em;
color: #666;
}
"""
# ------------------------------
# Gradio UI
# ------------------------------
with gr.Blocks(title="MedGemma Chat", css=css) as demo:
gr.HTML("""
<div class="medgemma-header">
<h1>🤖 MedGemma Chat</h1>
<p>Interact with Alibaba Cloud's MedGemma language models</p>
</div>
""")
with gr.Row():
with gr.Column(scale=3):
with gr.Group(elem_classes="medgemma-container"):
model_dd = gr.Dropdown(
label="Select MedGemma Model",
choices=[f"{k} - {v['description']}" for k, v in MODELS.items()],
value=f"{list(MODELS.keys())[0]} - {MODELS[list(MODELS.keys())[0]]['description']}",
elem_classes="model-select"
)
with gr.Group(elem_classes="controls-container"):
gr.Markdown("### ⚙️ Generation Parameters")
sys_prompt = gr.Textbox(label="System Prompt", lines=5, value=get_default_system_prompt())
with gr.Row():
max_tok = gr.Slider(64, 1024, value=512, step=32, label="Max Tokens")
with gr.Row():
temp = gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature")
p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-P")
with gr.Row():
k = gr.Slider(1, 100, value=40, step=1, label="Top-K")
rp = gr.Slider(1.0, 2.0, value=1.1, step=0.1, label="Repetition Penalty")
clear_btn = gr.Button("Clear Chat", elem_classes="button-secondary")
with gr.Column(scale=7):
chatbot = gr.Chatbot()
with gr.Row():
txt = gr.Textbox(
show_label=False,
placeholder="Type your message here...",
lines=2
)
submit_btn = gr.Button("Send", variant="primary", elem_classes="button-primary")
gr.HTML("""
<div class="footer">
</div>
""")
# Connect UI elements to functions
submit_btn.click(
user_input,
inputs=[txt, chatbot],
outputs=[txt, chatbot],
queue=False
).then(
bot_response,
inputs=[chatbot, sys_prompt, model_dd, max_tok, temp, k, p, rp],
outputs=chatbot,
api_name="generate"
)
txt.submit(
user_input,
inputs=[txt, chatbot],
outputs=[txt, chatbot],
queue=False
).then(
bot_response,
inputs=[chatbot, sys_prompt, model_dd, max_tok, temp, k, p, rp],
outputs=chatbot,
api_name="generate"
)
clear_btn.click(
clear_chat,
outputs=[chatbot],
queue=False
)
if __name__ == "__main__":
demo.launch()
|