Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,97 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
"""
|
7 |
-
client = InferenceClient("google/medgemma-27b-text-it")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
|
|
28 |
response = ""
|
29 |
-
|
30 |
-
for
|
31 |
-
|
32 |
-
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
response += token
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a helpful medical assistant.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
|
|
|
|
|
|
|
62 |
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
demo.launch()
|
|
|
1 |
+
import gc
|
2 |
+
import threading
|
3 |
import gradio as gr
|
4 |
+
import torch
|
5 |
+
from transformers import pipeline, TextIteratorStreamer, AutoTokenizer
|
6 |
+
import spaces
|
7 |
|
8 |
+
# Single-model configuration
|
9 |
+
MODEL_REPO = "google/medgemma-27b-text-it"
|
|
|
|
|
10 |
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_REPO)
|
12 |
+
# Choose best dtype available
|
13 |
+
dtype = (torch.bfloat16 if torch.cuda.is_available() and torch.cuda.is_bf16_supported()
|
14 |
+
else torch.float16 if torch.cuda.is_available()
|
15 |
+
else torch.float32)
|
16 |
+
pipe = pipeline(
|
17 |
+
task="text-generation",
|
18 |
+
model=MODEL_REPO,
|
19 |
+
tokenizer=tokenizer,
|
20 |
+
trust_remote_code=True,
|
21 |
+
torch_dtype=dtype,
|
22 |
+
device_map="auto" if torch.cuda.is_available() else None
|
23 |
+
)
|
24 |
+
pipe.to('cuda')
|
25 |
|
26 |
+
# Cancellation event for streaming
|
27 |
+
cancel_event = threading.Event()
|
28 |
+
def cancel_generation():
|
29 |
+
cancel_event.set()
|
30 |
+
return "Generation cancelled."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
# Streaming chat response without web search
|
33 |
+
@spaces.GPU
|
34 |
+
def chat_response(user_msg, chat_history, max_tokens, temperature, top_k, top_p, repetition_penalty):
|
35 |
+
cancel_event.clear()
|
36 |
+
history = list(chat_history or [])
|
37 |
+
history.append({"role": "user", "content": user_msg})
|
38 |
+
# Build prompt
|
39 |
+
prompt = ""
|
40 |
+
for msg in history:
|
41 |
+
prefix = "User: " if msg["role"] == "user" else "Assistant: "
|
42 |
+
prompt += prefix + msg["content"].strip() + "\n"
|
43 |
+
if not prompt.rstrip().endswith("Assistant:"):
|
44 |
+
prompt += "Assistant:"
|
45 |
+
|
46 |
+
# Set up streamer
|
47 |
+
streamer = TextIteratorStreamer(
|
48 |
+
tokenizer, skip_prompt=True, skip_special_tokens=True
|
49 |
+
)
|
50 |
+
t = threading.Thread(
|
51 |
+
target=pipe,
|
52 |
+
args=(prompt,),
|
53 |
+
kwargs={
|
54 |
+
'max_new_tokens': max_tokens,
|
55 |
+
'temperature': temperature,
|
56 |
+
'top_k': top_k,
|
57 |
+
'top_p': top_p,
|
58 |
+
'repetition_penalty': repetition_penalty,
|
59 |
+
'streamer': streamer,
|
60 |
+
'return_full_text': False,
|
61 |
+
}
|
62 |
+
)
|
63 |
+
t.start()
|
64 |
|
65 |
+
# Stream tokens into chat history
|
66 |
response = ""
|
67 |
+
history.append({"role": "assistant", "content": ""})
|
68 |
+
for token in streamer:
|
69 |
+
if cancel_event.is_set():
|
70 |
+
break
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
response += token
|
72 |
+
history[-1]["content"] = response
|
73 |
+
yield history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
t.join()
|
76 |
+
gc.collect()
|
77 |
+
yield history
|
78 |
|
79 |
+
# Build Gradio interface
|
80 |
+
with gr.Blocks(title="MedGemma Chat") as demo:
|
81 |
+
gr.Markdown("## Chat with Google/MedGemma-27B")
|
82 |
+
chat = gr.Chatbot()
|
83 |
+
txt = gr.Textbox(placeholder="Type your message and press Enter...")
|
84 |
+
with gr.Row():
|
85 |
+
max_tok = gr.Slider(64, 4096, value=1024, step=64, label="Max Tokens")
|
86 |
+
temp = gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="Temperature")
|
87 |
+
k = gr.Slider(1, 100, value=50, step=1, label="Top-K")
|
88 |
+
p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-P")
|
89 |
+
rp = gr.Slider(1.0, 2.0, value=1.2, step=0.1, label="Repetition Penalty")
|
90 |
+
cancel_btn = gr.Button("Cancel Generation")
|
91 |
+
cancel_btn.click(cancel_generation)
|
92 |
+
txt.submit(
|
93 |
+
fn=chat_response,
|
94 |
+
inputs=[txt, chat, max_tok, temp, k, p, rp],
|
95 |
+
outputs=chat
|
96 |
+
)
|
97 |
demo.launch()
|