Spaces:
Running
Running
Update app.R
Browse files
app.R
CHANGED
@@ -1,119 +1,104 @@
|
|
1 |
# setwd("~/Dropbox/OptimizingSI/Analysis/ono")
|
2 |
-
# install.packages(
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
options(error = NULL)
|
|
|
6 |
library(shiny)
|
7 |
library(ggplot2)
|
8 |
library(strategize)
|
9 |
library(dplyr)
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
zStar = 1.96,
|
16 |
n_strategies = 1L) {
|
17 |
-
|
18 |
-
|
|
|
19 |
levels <- names(probs[[1]])
|
20 |
|
21 |
-
|
22 |
-
df <- do.call(rbind, lapply(1:n_strategies, function(i) {
|
23 |
data.frame(
|
24 |
-
Strategy
|
25 |
-
|
|
|
26 |
Probability = probs[[i]]
|
27 |
-
#SE = ses[[i]]
|
28 |
)
|
29 |
}))
|
30 |
|
31 |
-
|
32 |
-
df$
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
# Apply ±offset for Democrat/Republican
|
37 |
-
df$x_dodged <- df$Level_num +
|
38 |
-
ifelse(df$Strategy == "Democrat",
|
39 |
-
-0.05, 0.05)
|
40 |
-
}
|
41 |
-
|
42 |
-
# Plot with ggplot2
|
43 |
-
p <- ggplot(df, aes(x = x_dodged,
|
44 |
-
y = Probability,
|
45 |
-
color = Strategy)) +
|
46 |
-
# Segment from y=0 to y=Probability
|
47 |
-
geom_segment(
|
48 |
-
aes(x = x_dodged, xend = x_dodged,
|
49 |
-
y = 0, yend = Probability),
|
50 |
-
size = 0.3
|
51 |
-
) +
|
52 |
-
# Point at the probability
|
53 |
-
geom_point(
|
54 |
-
size = 2.5
|
55 |
-
) +
|
56 |
-
# Text label above the point
|
57 |
-
geom_text(
|
58 |
-
aes(x = x_dodged,
|
59 |
-
label = sprintf("%.2f", Probability)),
|
60 |
-
vjust = -0.7,
|
61 |
-
size = 3
|
62 |
-
) +
|
63 |
-
# Set x-axis with original Level labels
|
64 |
-
scale_x_continuous(
|
65 |
-
breaks = unique(df$Level_num),
|
66 |
-
labels = unique(df$Level),
|
67 |
-
limits = c(min(df$x_dodged)-0.20,
|
68 |
-
max(df$x_dodged)+0.20)
|
69 |
-
) +
|
70 |
-
# Labels
|
71 |
-
labs(
|
72 |
-
title = "Optimal Distribution for:",
|
73 |
-
subtitle = sprintf("*%s*", gsub(factor_name,
|
74 |
-
pattern = "\\.",
|
75 |
-
replace = " ")),
|
76 |
-
x = "Level",
|
77 |
-
y = "Probability"
|
78 |
-
) +
|
79 |
-
# Apply Tufte's minimalistic theme
|
80 |
-
theme_minimal(base_size = 18,
|
81 |
-
base_line_size = 0) +
|
82 |
-
theme(
|
83 |
-
legend.position = "none",
|
84 |
-
legend.title = element_blank(),
|
85 |
-
panel.grid.major = element_blank(),
|
86 |
-
panel.grid.minor = element_blank(),
|
87 |
-
axis.line = element_line(color = "black", size = 0.5),
|
88 |
-
axis.text.x = element_text(angle = 45,
|
89 |
-
hjust = 1,
|
90 |
-
margin = margin(r = 10)) # Add right margin
|
91 |
-
) +
|
92 |
-
# Manual color scale for different strategies
|
93 |
-
scale_color_manual(values = c("Democrat" = "#89cff0",
|
94 |
-
"Republican" = "red",
|
95 |
-
"Optimal" = "black"))
|
96 |
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
}
|
99 |
|
100 |
-
#
|
|
|
|
|
101 |
ui <- fluidPage(
|
|
|
|
|
102 |
titlePanel("Exploring strategize with the candidate choice conjoint data"),
|
103 |
|
104 |
tags$p(
|
105 |
style = "text-align: left; margin-top: -10px;",
|
106 |
-
tags$a(
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
icon("external-link", style = "font-size: 12px;")
|
113 |
-
)
|
114 |
),
|
115 |
|
116 |
-
# ----
|
117 |
tags$div(
|
118 |
style = "text-align: left; margin: 0.5em 0 0.5em 0em;",
|
119 |
HTML('
|
@@ -133,8 +118,9 @@ ui <- fluidPage(
|
|
133 |
cursor: pointer;
|
134 |
box-shadow: 0 1.5px 0 #000;
|
135 |
">
|
136 |
-
<svg width="18" height="18" viewBox="0 0 24 24" fill="none"
|
137 |
-
stroke
|
|
|
138 |
<circle cx="18" cy="5" r="3"></circle>
|
139 |
<circle cx="6" cy="12" r="3"></circle>
|
140 |
<circle cx="18" cy="19" r="3"></circle>
|
@@ -146,65 +132,34 @@ ui <- fluidPage(
|
|
146 |
'),
|
147 |
tags$script(
|
148 |
HTML("
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
document.
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
}
|
166 |
-
|
167 |
-
|
168 |
-
const pageTitle = document.title || 'Check this out!';
|
169 |
-
// If browser supports Web Share API
|
170 |
-
if (navigator.share) {
|
171 |
-
navigator.share({
|
172 |
-
title: pageTitle,
|
173 |
-
text: '',
|
174 |
-
url: currentURL
|
175 |
-
})
|
176 |
-
.catch((error) => {
|
177 |
-
console.log('Sharing failed', error);
|
178 |
-
});
|
179 |
-
} else {
|
180 |
-
// Fallback: Copy URL
|
181 |
-
if (navigator.clipboard && navigator.clipboard.writeText) {
|
182 |
-
navigator.clipboard.writeText(currentURL).then(() => {
|
183 |
-
showCopyNotification();
|
184 |
-
}, (err) => {
|
185 |
-
console.error('Could not copy text: ', err);
|
186 |
-
});
|
187 |
-
} else {
|
188 |
-
// Double fallback for older browsers
|
189 |
-
const textArea = document.createElement('textarea');
|
190 |
-
textArea.value = currentURL;
|
191 |
-
document.body.appendChild(textArea);
|
192 |
-
textArea.select();
|
193 |
-
try {
|
194 |
-
document.execCommand('copy');
|
195 |
-
showCopyNotification();
|
196 |
-
} catch (err) {
|
197 |
-
alert('Please copy this link:\\n' + currentURL);
|
198 |
-
}
|
199 |
-
document.body.removeChild(textArea);
|
200 |
-
}
|
201 |
-
}
|
202 |
-
});
|
203 |
-
})();
|
204 |
-
")
|
205 |
)
|
206 |
-
),
|
207 |
-
# ---- End: Minimal Share button snippet ----
|
208 |
|
209 |
sidebarLayout(
|
210 |
sidebarPanel(
|
@@ -218,16 +173,14 @@ ui <- fluidPage(
|
|
218 |
choices = c("All", "Democrat", "Independent", "Republican"),
|
219 |
selected = "All")
|
220 |
),
|
221 |
-
numericInput("lambda_input", "Lambda (regularization):",
|
222 |
value = 0.01, min = 1e-6, max = 10, step = 0.01),
|
223 |
actionButton("compute", "Compute Results", class = "btn-primary"),
|
224 |
hr(),
|
225 |
h4("Visualization"),
|
226 |
-
selectInput("factor", "Select Factor to Display:",
|
227 |
-
choices = NULL),
|
228 |
br(),
|
229 |
-
selectInput("previousResults", "View Previous Results:",
|
230 |
-
choices = NULL),
|
231 |
hr(),
|
232 |
h5("Instructions:"),
|
233 |
p("1. Select a case type and, for Average case, a respondent group."),
|
@@ -243,21 +196,25 @@ ui <- fluidPage(
|
|
243 |
plotOutput("strategy_plot", height = "600px")),
|
244 |
tabPanel("Q Value",
|
245 |
verbatimTextOutput("q_value"),
|
246 |
-
p("Q represents the estimated outcome
|
247 |
-
|
248 |
tabPanel("About",
|
249 |
h3("About this page"),
|
250 |
p("This page app explores the ",
|
251 |
-
a("strategize R package",
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
"
|
257 |
-
|
258 |
-
|
|
|
|
|
|
|
259 |
p(strong("More information:"),
|
260 |
-
a("strategizelab.org", href = "https://strategizelab.org",
|
|
|
261 |
)
|
262 |
),
|
263 |
br(),
|
@@ -269,161 +226,157 @@ ui <- fluidPage(
|
|
269 |
)
|
270 |
)
|
271 |
|
272 |
-
#
|
|
|
|
|
273 |
server <- function(input, output, session) {
|
274 |
-
|
|
|
275 |
load("Processed_OnoData.RData")
|
276 |
Primary2016 <- read.csv("PrimaryCandidates2016 - Sheet1.csv")
|
277 |
|
278 |
-
#
|
279 |
cachedResults <- reactiveValues(data = list())
|
|
|
280 |
|
281 |
-
#
|
282 |
observe({
|
|
|
283 |
if (input$case_type == "Average") {
|
284 |
-
factors <-
|
285 |
} else {
|
286 |
-
factors <-
|
|
|
287 |
}
|
288 |
-
updateSelectInput(session, "factor",
|
|
|
|
|
289 |
})
|
290 |
|
291 |
-
#
|
|
|
|
|
292 |
observeEvent(input$compute, {
|
293 |
-
|
294 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
|
296 |
-
#
|
297 |
params <- list(
|
298 |
-
nSGD
|
299 |
-
batch_size
|
300 |
penalty_type = "KL",
|
301 |
-
nFolds
|
302 |
-
use_optax
|
303 |
-
compute_se
|
304 |
-
conf_level
|
305 |
-
conda_env
|
306 |
conda_env_required = TRUE
|
307 |
)
|
308 |
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
# Include the case type, group (if Average), and lambda in the label
|
314 |
-
if (input$case_type == "Average") {
|
315 |
-
label <- paste("Case=Average, Group=", input$respondent_group, ", Lambda=", my_lambda, sep="")
|
316 |
-
} else {
|
317 |
-
label <- paste("Case=Adversarial, Lambda=", my_lambda, sep="")
|
318 |
-
}
|
319 |
-
|
320 |
-
strategize_start <- Sys.time() # Timing strategize start
|
321 |
-
if (input$case_type == "Average") {
|
322 |
-
# Subset data for Average case
|
323 |
-
if (input$respondent_group == "All") {
|
324 |
-
indices <- which(my_data$Office == "President")
|
325 |
} else {
|
326 |
-
|
327 |
-
|
328 |
-
my_data$Office == "President"
|
329 |
-
)
|
330 |
}
|
331 |
|
332 |
-
FACTOR_MAT <- FACTOR_MAT_FULL[indices,
|
333 |
-
!colnames(FACTOR_MAT_FULL) %in%
|
334 |
-
c("Office","Party.affiliation","Party.competition")]
|
335 |
-
Yobs
|
336 |
-
X
|
337 |
-
|
338 |
-
|
339 |
-
assignmentProbList <- assignmentProbList_FULL[names(FACTOR_MAT)]
|
340 |
-
|
341 |
-
incProgress(0.4,
|
342 |
-
detail = "Running strategize...")
|
343 |
|
344 |
-
# Compute with strategize
|
345 |
Qoptimized <- strategize(
|
346 |
Y = Yobs,
|
347 |
W = FACTOR_MAT,
|
348 |
X = X,
|
349 |
pair_id = pair_id,
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
nSGD = params$nSGD,
|
358 |
penalty_type = params$penalty_type,
|
359 |
-
folds
|
360 |
use_optax = params$use_optax,
|
361 |
compute_se = params$compute_se,
|
362 |
conf_level = params$conf_level,
|
363 |
-
conda_env
|
364 |
conda_env_required = params$conda_env_required
|
365 |
)
|
366 |
Qoptimized$n_strategies <- 1L
|
367 |
-
}
|
368 |
-
if (input$case_type == "Adversarial"){
|
369 |
-
# Adversarial case
|
370 |
-
|
371 |
-
DROP_FACTORS <- c("Office", "Party.affiliation", "Party.competition")
|
372 |
-
FACTOR_MAT <- FACTOR_MAT_FULL[, !colnames(FACTOR_MAT_FULL) %in% DROP_FACTORS]
|
373 |
-
Yobs <- Yobs_FULL
|
374 |
-
X <- X_FULL
|
375 |
-
log_pr_w <- log_pr_w_FULL
|
376 |
-
assignmentProbList <- assignmentProbList_FULL[!names(assignmentProbList_FULL) %in% DROP_FACTORS]
|
377 |
|
378 |
-
|
|
|
|
|
|
|
|
|
379 |
|
|
|
380 |
FactorOptions <- apply(FACTOR_MAT, 2, table)
|
381 |
-
prior_alpha
|
382 |
-
Primary_D
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
Empirical_ <- table(Primary_R[[col]])
|
397 |
-
Empirical_ <- Empirical_[names(Empirical_) != "Unclear"]
|
398 |
-
posterior_alpha[names(Empirical_)] <- posterior_alpha[names(Empirical_)] + Empirical_
|
399 |
-
prop.table(posterior_alpha)
|
400 |
-
})
|
401 |
-
names(Primary_R_slate) <- colnames(Primary_R)
|
402 |
-
|
403 |
-
slate_list <- list("Democratic" = Primary_D_slate, "Republican" = Primary_R_slate)
|
404 |
|
405 |
-
indices <- which(
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
pair_id <- pair_id_FULL[indices]
|
414 |
cluster_var <- cluster_var_FULL[indices]
|
415 |
-
my_data_red$Party.affiliation_clean <-
|
416 |
-
my_data_red$Party.affiliation == "Republican Party",
|
417 |
-
|
418 |
-
no = ifelse(my_data_red$Party.affiliation == "Democratic Party","Democrat","Independent")
|
419 |
-
)
|
420 |
|
421 |
assignmentProbList <- assignmentProbList_FULL[colnames(FACTOR_MAT)]
|
422 |
slate_list$Democratic <- slate_list$Democratic[names(assignmentProbList)]
|
423 |
slate_list$Republican <- slate_list$Republican[names(assignmentProbList)]
|
424 |
|
425 |
-
incProgress(0.4, detail = "Running strategize...")
|
426 |
-
|
427 |
Qoptimized <- strategize(
|
428 |
Y = Yobs,
|
429 |
W = FACTOR_MAT,
|
@@ -432,97 +385,90 @@ server <- function(input, output, session) {
|
|
432 |
slate_list = slate_list,
|
433 |
varcov_cluster_variable = cluster_var,
|
434 |
competing_group_variable_respondent = my_data_red$R_Partisanship,
|
435 |
-
competing_group_variable_candidate
|
436 |
-
competing_group_competition_variable_candidate =
|
437 |
-
|
438 |
-
|
|
|
439 |
respondent_task_id = my_data_red$task,
|
440 |
-
profile_order
|
441 |
-
|
442 |
-
|
443 |
-
diff = TRUE,
|
444 |
use_regularization = TRUE,
|
445 |
-
force_gaussian
|
446 |
-
adversarial
|
447 |
-
K
|
448 |
nMonte_adversarial = 20L,
|
449 |
-
nSGD
|
450 |
penalty_type = params$penalty_type,
|
451 |
learning_rate_max = 0.001,
|
452 |
-
use_optax
|
453 |
compute_se = params$compute_se,
|
454 |
conf_level = params$conf_level,
|
455 |
-
conda_env
|
456 |
conda_env_required = params$conda_env_required
|
457 |
)
|
458 |
-
# check correlation between strategies to diagnose optimization issues
|
459 |
-
# plot(unlist(Qoptimized$pi_star_point$Democrat), unlist(Qoptimized$pi_star_point$Republican))
|
460 |
Qoptimized$n_strategies <- 2L
|
461 |
}
|
462 |
-
Qoptimized$runtime_seconds <- as.numeric(difftime(Sys.time(),
|
463 |
-
strategize_start,
|
464 |
-
units = "secs"))
|
465 |
-
|
466 |
-
Qoptimized <- Qoptimized[c("pi_star_point",
|
467 |
-
"pi_star_se",
|
468 |
-
"Q_point",
|
469 |
-
"Q_se",
|
470 |
-
"n_strategies",
|
471 |
-
"runtime_seconds")]
|
472 |
-
|
473 |
-
incProgress(0.8, detail = "Finalizing results...")
|
474 |
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
483 |
})
|
484 |
|
485 |
-
#
|
486 |
selectedResult <- reactive({
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
cachedResults$data[[
|
|
|
|
|
491 |
})
|
492 |
|
493 |
-
#
|
494 |
output$strategy_plot <- renderPlot({
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
n_strategies <- selectedResult()$n_strategies
|
500 |
-
plot_factor(pi_star_list = pi_star_list,
|
501 |
-
pi_star_se_list = pi_star_se_list,
|
502 |
-
factor_name = factor_name,
|
503 |
-
n_strategies = n_strategies)
|
504 |
})
|
505 |
|
506 |
-
# Render Q value
|
507 |
output$q_value <- renderText({
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
if(show_se){ render_text <- paste("Estimated Q Value:", sprintf("%.3f ± %.3f", q_point, 1.96 * q_se)) }
|
515 |
-
sprintf("%s (Runtime: %.3f s)",
|
516 |
-
render_text,
|
517 |
-
selectedResult()$runtime_seconds)
|
518 |
})
|
519 |
|
520 |
-
|
521 |
-
output$selection_summary <- renderText({
|
522 |
-
input$previousResults
|
523 |
-
})
|
524 |
}
|
525 |
|
526 |
-
#
|
|
|
|
|
527 |
shinyApp(ui, server)
|
528 |
-
|
|
|
1 |
# setwd("~/Dropbox/OptimizingSI/Analysis/ono")
|
2 |
+
# install.packages("~/Documents/strategize-software/strategize", repos = NULL, type = "source", force = FALSE)
|
3 |
+
|
4 |
+
# =============================================================================
|
5 |
+
# app_ono.R
|
6 |
+
# Async, navigation‑friendly Shiny demo for strategize‑Ono
|
7 |
+
# ---------------------------------------------------------------------------
|
8 |
+
# * Heavy strategize jobs run in a background R session via future/promises.
|
9 |
+
# * UI stays responsive; you can browse old results while a new run crunches.
|
10 |
+
# * STARTUP‑SAFE and INPUT‑SAFE:
|
11 |
+
# • req(input$case_type) prevents length‑zero error.
|
12 |
+
# • Reactive inputs are captured (isolated) *before* the future() call,
|
13 |
+
# fixing “Can't access reactive value outside reactive consumer.”
|
14 |
+
# =============================================================================
|
15 |
|
16 |
options(error = NULL)
|
17 |
+
|
18 |
library(shiny)
|
19 |
library(ggplot2)
|
20 |
library(strategize)
|
21 |
library(dplyr)
|
22 |
|
23 |
+
# ---- Async helpers ----------------------------------------------------------
|
24 |
+
library(promises)
|
25 |
+
library(future) ; plan(multisession) # 1 worker per core
|
26 |
+
library(shinyjs)
|
27 |
+
|
28 |
+
# =============================================================================
|
29 |
+
# Custom plotting function (unchanged)
|
30 |
+
# =============================================================================
|
31 |
+
plot_factor <- function(pi_star_list,
|
32 |
+
pi_star_se_list,
|
33 |
+
factor_name,
|
34 |
zStar = 1.96,
|
35 |
n_strategies = 1L) {
|
36 |
+
|
37 |
+
probs <- lapply(pi_star_list, function(x) x[[factor_name]])
|
38 |
+
ses <- lapply(pi_star_se_list, function(x) x[[factor_name]])
|
39 |
levels <- names(probs[[1]])
|
40 |
|
41 |
+
df <- do.call(rbind, lapply(seq_len(n_strategies), function(i) {
|
|
|
42 |
data.frame(
|
43 |
+
Strategy = if (n_strategies == 1) "Optimal"
|
44 |
+
else c("Democrat", "Republican")[i],
|
45 |
+
Level = levels,
|
46 |
Probability = probs[[i]]
|
|
|
47 |
)
|
48 |
}))
|
49 |
|
50 |
+
df$Level_num <- as.numeric(as.factor(df$Level))
|
51 |
+
df$x_dodged <- if (n_strategies == 1)
|
52 |
+
df$Level_num
|
53 |
+
else
|
54 |
+
df$Level_num + ifelse(df$Strategy == "Democrat", -0.05, 0.05)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
ggplot(df, aes(x = x_dodged, y = Probability, color = Strategy)) +
|
57 |
+
geom_segment(aes(xend = x_dodged, yend = Probability), size = 0.3) +
|
58 |
+
geom_point(size = 2.5) +
|
59 |
+
geom_text(aes(label = sprintf("%.2f", Probability)),
|
60 |
+
vjust = -0.7, size = 3) +
|
61 |
+
scale_x_continuous(breaks = unique(df$Level_num),
|
62 |
+
labels = unique(df$Level),
|
63 |
+
limits = c(min(df$x_dodged) - 0.20,
|
64 |
+
max(df$x_dodged) + 0.20)) +
|
65 |
+
labs(title = "Optimal Distribution for:",
|
66 |
+
subtitle = sprintf("*%s*",
|
67 |
+
gsub(factor_name, pattern = "\\.", replace = " ")),
|
68 |
+
x = "Level",
|
69 |
+
y = "Probability") +
|
70 |
+
theme_minimal(base_size = 18) +
|
71 |
+
theme(legend.position = "none",
|
72 |
+
legend.title = element_blank(),
|
73 |
+
panel.grid.major = element_blank(),
|
74 |
+
panel.grid.minor = element_blank(),
|
75 |
+
axis.line = element_line(color = "black", size = 0.5),
|
76 |
+
axis.text.x = element_text(angle = 45, hjust = 1,
|
77 |
+
margin = margin(r = 10))) +
|
78 |
+
scale_color_manual(values = c(Democrat = "#89cff0",
|
79 |
+
Republican = "red",
|
80 |
+
Optimal = "black"))
|
81 |
}
|
82 |
|
83 |
+
# =============================================================================
|
84 |
+
# UI (identical to previous async version—only shinyjs::useShinyjs() added)
|
85 |
+
# =============================================================================
|
86 |
ui <- fluidPage(
|
87 |
+
useShinyjs(),
|
88 |
+
|
89 |
titlePanel("Exploring strategize with the candidate choice conjoint data"),
|
90 |
|
91 |
tags$p(
|
92 |
style = "text-align: left; margin-top: -10px;",
|
93 |
+
tags$a(href = "https://strategizelab.org/",
|
94 |
+
target = "_blank",
|
95 |
+
title = "strategizelab.org",
|
96 |
+
style = "color: #337ab7; text-decoration: none;",
|
97 |
+
"strategizelab.org ",
|
98 |
+
icon("external-link", style = "font-size: 12px;"))
|
|
|
|
|
99 |
),
|
100 |
|
101 |
+
# ---- Share button (unchanged) --------------------------------------------
|
102 |
tags$div(
|
103 |
style = "text-align: left; margin: 0.5em 0 0.5em 0em;",
|
104 |
HTML('
|
|
|
118 |
cursor: pointer;
|
119 |
box-shadow: 0 1.5px 0 #000;
|
120 |
">
|
121 |
+
<svg width="18" height="18" viewBox="0 0 24 24" fill="none"
|
122 |
+
stroke="currentColor" stroke-width="2" stroke-linecap="round"
|
123 |
+
stroke-linejoin="round">
|
124 |
<circle cx="18" cy="5" r="3"></circle>
|
125 |
<circle cx="6" cy="12" r="3"></circle>
|
126 |
<circle cx="18" cy="19" r="3"></circle>
|
|
|
132 |
'),
|
133 |
tags$script(
|
134 |
HTML("
|
135 |
+
(function() {
|
136 |
+
const shareBtn = document.getElementById('share-button');
|
137 |
+
function toast() {
|
138 |
+
const n = document.createElement('div');
|
139 |
+
n.innerText = 'Copied to clipboard';
|
140 |
+
Object.assign(n.style, {
|
141 |
+
position:'fixed',bottom:'20px',right:'20px',
|
142 |
+
background:'rgba(0,0,0,0.8)',color:'#fff',
|
143 |
+
padding:'8px 12px',borderRadius:'4px',zIndex:9999});
|
144 |
+
document.body.appendChild(n); setTimeout(()=>n.remove(),2000);
|
145 |
+
}
|
146 |
+
shareBtn.addEventListener('click', ()=>{
|
147 |
+
const url = window.location.href;
|
148 |
+
if (navigator.share) {
|
149 |
+
navigator.share({title:document.title||'Link',url})
|
150 |
+
.catch(()=>{});
|
151 |
+
} else if (navigator.clipboard) {
|
152 |
+
navigator.clipboard.writeText(url).then(toast);
|
153 |
+
} else {
|
154 |
+
const ta = document.createElement('textarea');
|
155 |
+
ta.value=url; document.body.appendChild(ta); ta.select();
|
156 |
+
try{document.execCommand('copy'); toast();}
|
157 |
+
catch(e){alert('Copy this link:\\n'+url);} ta.remove();
|
158 |
}
|
159 |
+
});
|
160 |
+
})();")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
)
|
162 |
+
),
|
|
|
163 |
|
164 |
sidebarLayout(
|
165 |
sidebarPanel(
|
|
|
173 |
choices = c("All", "Democrat", "Independent", "Republican"),
|
174 |
selected = "All")
|
175 |
),
|
176 |
+
numericInput("lambda_input", "Lambda (regularization):",
|
177 |
value = 0.01, min = 1e-6, max = 10, step = 0.01),
|
178 |
actionButton("compute", "Compute Results", class = "btn-primary"),
|
179 |
hr(),
|
180 |
h4("Visualization"),
|
181 |
+
selectInput("factor", "Select Factor to Display:", choices = NULL),
|
|
|
182 |
br(),
|
183 |
+
selectInput("previousResults", "View Previous Results:", choices = NULL),
|
|
|
184 |
hr(),
|
185 |
h5("Instructions:"),
|
186 |
p("1. Select a case type and, for Average case, a respondent group."),
|
|
|
196 |
plotOutput("strategy_plot", height = "600px")),
|
197 |
tabPanel("Q Value",
|
198 |
verbatimTextOutput("q_value"),
|
199 |
+
p("Q represents the estimated outcome under the optimal strategy,",
|
200 |
+
"with 95% confidence interval.")),
|
201 |
tabPanel("About",
|
202 |
h3("About this page"),
|
203 |
p("This page app explores the ",
|
204 |
+
a("strategize R package",
|
205 |
+
href = "https://github.com/cjerzak/strategize-software/",
|
206 |
+
target = "_blank"),
|
207 |
+
" using Ono forced conjoint experimental data.",
|
208 |
+
"It computes optimal strategies for Average (optimizing for a respondent",
|
209 |
+
"group) and Adversarial (optimizing for both parties in competition) cases",
|
210 |
+
"on the fly."),
|
211 |
+
p(strong("Average Case:"), "Optimizes candidate characteristics for a",
|
212 |
+
"selected respondent group."),
|
213 |
+
p(strong("Adversarial Case:"), "Finds equilibrium strategies for Democrats",
|
214 |
+
"and Republicans."),
|
215 |
p(strong("More information:"),
|
216 |
+
a("strategizelab.org", href = "https://strategizelab.org",
|
217 |
+
target = "_blank"))
|
218 |
)
|
219 |
),
|
220 |
br(),
|
|
|
226 |
)
|
227 |
)
|
228 |
|
229 |
+
# =============================================================================
|
230 |
+
# SERVER
|
231 |
+
# =============================================================================
|
232 |
server <- function(input, output, session) {
|
233 |
+
|
234 |
+
# ---- Data load (unchanged) -----------------------------------------------
|
235 |
load("Processed_OnoData.RData")
|
236 |
Primary2016 <- read.csv("PrimaryCandidates2016 - Sheet1.csv")
|
237 |
|
238 |
+
# ---- Reactive stores ------------------------------------------------------
|
239 |
cachedResults <- reactiveValues(data = list())
|
240 |
+
runningFlags <- reactiveValues(active = list())
|
241 |
|
242 |
+
# ---- Factor dropdown updater ---------------------------------------------
|
243 |
observe({
|
244 |
+
req(input$case_type)
|
245 |
if (input$case_type == "Average") {
|
246 |
+
factors <- setdiff(colnames(FACTOR_MAT_FULL), "Office")
|
247 |
} else {
|
248 |
+
factors <- setdiff(colnames(FACTOR_MAT_FULL),
|
249 |
+
c("Office", "Party.affiliation", "Party.competition"))
|
250 |
}
|
251 |
+
updateSelectInput(session, "factor",
|
252 |
+
choices = factors,
|
253 |
+
selected = factors[1])
|
254 |
})
|
255 |
|
256 |
+
# ===========================================================================
|
257 |
+
# Compute Results button
|
258 |
+
# ===========================================================================
|
259 |
observeEvent(input$compute, {
|
260 |
+
|
261 |
+
## ---- CAPTURE reactive inputs ------------------------------------------
|
262 |
+
case_type <- isolate(input$case_type)
|
263 |
+
respondent_group <- isolate(input$respondent_group)
|
264 |
+
my_lambda <- isolate(input$lambda_input)
|
265 |
+
|
266 |
+
label <- if (case_type == "Average") {
|
267 |
+
paste0("Case=Average, Group=", respondent_group,
|
268 |
+
", Lambda=", my_lambda)
|
269 |
+
} else {
|
270 |
+
paste0("Case=Adversarial, Lambda=", my_lambda)
|
271 |
+
}
|
272 |
+
|
273 |
+
runningFlags$active[[label]] <- TRUE
|
274 |
+
cachedResults$data[[label]] <- NULL
|
275 |
+
updateSelectInput(session, "previousResults",
|
276 |
+
choices = names(cachedResults$data),
|
277 |
+
selected = label)
|
278 |
+
shinyjs::disable("compute")
|
279 |
+
showNotification(sprintf("Job '%s' submitted …", label),
|
280 |
+
type = "message", duration = 3)
|
281 |
+
|
282 |
+
## ---- FUTURE -----------------------------------------------------------
|
283 |
+
future({
|
284 |
+
|
285 |
+
strategize_start <- Sys.time()
|
286 |
|
287 |
+
# --------------- shared hyper‑params ----------------------------------
|
288 |
params <- list(
|
289 |
+
nSGD = 1000L,
|
290 |
+
batch_size = 50L,
|
291 |
penalty_type = "KL",
|
292 |
+
nFolds = 3L,
|
293 |
+
use_optax = TRUE,
|
294 |
+
compute_se = FALSE,
|
295 |
+
conf_level = 0.95,
|
296 |
+
conda_env = "strategize",
|
297 |
conda_env_required = TRUE
|
298 |
)
|
299 |
|
300 |
+
if (case_type == "Average") {
|
301 |
+
# ---------- Average case --------------------------------------------
|
302 |
+
indices <- if (respondent_group == "All") {
|
303 |
+
which(my_data$Office == "President")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
} else {
|
305 |
+
which(my_data_FULL$R_Partisanship == respondent_group &
|
306 |
+
my_data$Office == "President")
|
|
|
|
|
307 |
}
|
308 |
|
309 |
+
FACTOR_MAT <- FACTOR_MAT_FULL[indices,
|
310 |
+
!colnames(FACTOR_MAT_FULL) %in%
|
311 |
+
c("Office", "Party.affiliation", "Party.competition")]
|
312 |
+
Yobs <- Yobs_FULL[indices]
|
313 |
+
X <- X_FULL[indices, ]
|
314 |
+
pair_id <- pair_id_FULL[indices]
|
315 |
+
assignmentProbList <- assignmentProbList_FULL[colnames(FACTOR_MAT)]
|
|
|
|
|
|
|
|
|
316 |
|
|
|
317 |
Qoptimized <- strategize(
|
318 |
Y = Yobs,
|
319 |
W = FACTOR_MAT,
|
320 |
X = X,
|
321 |
pair_id = pair_id,
|
322 |
+
p_list = assignmentProbList[colnames(FACTOR_MAT)],
|
323 |
+
lambda = my_lambda,
|
324 |
+
diff = TRUE,
|
325 |
+
adversarial = FALSE,
|
326 |
+
use_regularization = TRUE,
|
327 |
+
K = 1L,
|
328 |
+
nSGD = params$nSGD,
|
|
|
329 |
penalty_type = params$penalty_type,
|
330 |
+
folds = params$nFolds,
|
331 |
use_optax = params$use_optax,
|
332 |
compute_se = params$compute_se,
|
333 |
conf_level = params$conf_level,
|
334 |
+
conda_env = params$conda_env,
|
335 |
conda_env_required = params$conda_env_required
|
336 |
)
|
337 |
Qoptimized$n_strategies <- 1L
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
|
339 |
+
} else {
|
340 |
+
# ---------- Adversarial case ----------------------------------------
|
341 |
+
DROP <- c("Office", "Party.affiliation", "Party.competition")
|
342 |
+
FACTOR_MAT <- FACTOR_MAT_FULL[, !colnames(FACTOR_MAT_FULL) %in% DROP]
|
343 |
+
assignmentProbList <- assignmentProbList_FULL[!names(assignmentProbList_FULL) %in% DROP]
|
344 |
|
345 |
+
# Build Primary slates
|
346 |
FactorOptions <- apply(FACTOR_MAT, 2, table)
|
347 |
+
prior_alpha <- 10
|
348 |
+
Primary_D <- Primary2016[Primary2016$Party == "Democratic",
|
349 |
+
colnames(FACTOR_MAT)]
|
350 |
+
Primary_R <- Primary2016[Primary2016$Party == "Republican",
|
351 |
+
colnames(FACTOR_MAT)]
|
352 |
+
slate_fun <- function(df) {
|
353 |
+
lapply(colnames(df), function(col) {
|
354 |
+
post <- FactorOptions[[col]]; post[] <- prior_alpha
|
355 |
+
emp <- table(df[[col]]); emp <- emp[names(emp) != "Unclear"]
|
356 |
+
post[names(emp)] <- post[names(emp)] + emp
|
357 |
+
prop.table(post)
|
358 |
+
}) |> setNames(colnames(df))
|
359 |
+
}
|
360 |
+
slate_list <- list(Democratic = slate_fun(Primary_D),
|
361 |
+
Republican = slate_fun(Primary_R))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
362 |
|
363 |
+
indices <- which(my_data$R_Partisanship %in% c("Republican", "Democrat") &
|
364 |
+
my_data$Office == "President")
|
365 |
+
FACTOR_MAT <- FACTOR_MAT_FULL[indices,
|
366 |
+
!colnames(FACTOR_MAT_FULL) %in%
|
367 |
+
c("Office", "Party.competition", "Party.affiliation")]
|
368 |
+
Yobs <- Yobs_FULL[indices]
|
369 |
+
my_data_red <- my_data_FULL[indices, ]
|
370 |
+
pair_id <- pair_id_FULL[indices]
|
|
|
371 |
cluster_var <- cluster_var_FULL[indices]
|
372 |
+
my_data_red$Party.affiliation_clean <-
|
373 |
+
ifelse(my_data_red$Party.affiliation == "Republican Party", "Republican",
|
374 |
+
ifelse(my_data_red$Party.affiliation == "Democratic Party","Democrat","Independent"))
|
|
|
|
|
375 |
|
376 |
assignmentProbList <- assignmentProbList_FULL[colnames(FACTOR_MAT)]
|
377 |
slate_list$Democratic <- slate_list$Democratic[names(assignmentProbList)]
|
378 |
slate_list$Republican <- slate_list$Republican[names(assignmentProbList)]
|
379 |
|
|
|
|
|
380 |
Qoptimized <- strategize(
|
381 |
Y = Yobs,
|
382 |
W = FACTOR_MAT,
|
|
|
385 |
slate_list = slate_list,
|
386 |
varcov_cluster_variable = cluster_var,
|
387 |
competing_group_variable_respondent = my_data_red$R_Partisanship,
|
388 |
+
competing_group_variable_candidate = my_data_red$Party.affiliation_clean,
|
389 |
+
competing_group_competition_variable_candidate =
|
390 |
+
my_data_red$Party.competition,
|
391 |
+
pair_id = pair_id,
|
392 |
+
respondent_id = my_data_red$respondentIndex,
|
393 |
respondent_task_id = my_data_red$task,
|
394 |
+
profile_order = my_data_red$profile,
|
395 |
+
lambda = my_lambda,
|
396 |
+
diff = TRUE,
|
|
|
397 |
use_regularization = TRUE,
|
398 |
+
force_gaussian = FALSE,
|
399 |
+
adversarial = TRUE,
|
400 |
+
K = 1L,
|
401 |
nMonte_adversarial = 20L,
|
402 |
+
nSGD = params$nSGD,
|
403 |
penalty_type = params$penalty_type,
|
404 |
learning_rate_max = 0.001,
|
405 |
+
use_optax = params$use_optax,
|
406 |
compute_se = params$compute_se,
|
407 |
conf_level = params$conf_level,
|
408 |
+
conda_env = params$conda_env,
|
409 |
conda_env_required = params$conda_env_required
|
410 |
)
|
|
|
|
|
411 |
Qoptimized$n_strategies <- 2L
|
412 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
413 |
|
414 |
+
Qoptimized$runtime_seconds <-
|
415 |
+
as.numeric(difftime(Sys.time(), strategize_start, units = "secs"))
|
416 |
+
Qoptimized[c("pi_star_point", "pi_star_se", "Q_point",
|
417 |
+
"Q_se", "n_strategies", "runtime_seconds")]
|
418 |
+
}) %...>% # success handler
|
419 |
+
(function(res) {
|
420 |
+
cachedResults$data[[label]] <- res
|
421 |
+
runningFlags$active[[label]] <- FALSE
|
422 |
+
updateSelectInput(session, "previousResults",
|
423 |
+
choices = names(cachedResults$data),
|
424 |
+
selected = label)
|
425 |
+
shinyjs::enable("compute")
|
426 |
+
showNotification(sprintf("Job '%s' finished (%.1f s).",
|
427 |
+
label, res$runtime_seconds),
|
428 |
+
type = "message", duration = 6)
|
429 |
+
}) %...!% # error handler
|
430 |
+
(function(err) {
|
431 |
+
runningFlags$active[[label]] <- FALSE
|
432 |
+
cachedResults$data[[label]] <- NULL
|
433 |
+
shinyjs::enable("compute")
|
434 |
+
showNotification(paste("Error in", label, ":", err$message),
|
435 |
+
type = "error", duration = 8)
|
436 |
+
})
|
437 |
+
|
438 |
+
NULL # return value of observeEvent
|
439 |
})
|
440 |
|
441 |
+
# ---- Helper: fetch selected result or show waiting msg -------------------
|
442 |
selectedResult <- reactive({
|
443 |
+
lbl <- input$previousResults ; req(lbl)
|
444 |
+
if (isTRUE(runningFlags$active[[lbl]]))
|
445 |
+
validate("Computation is still running – please wait…")
|
446 |
+
res <- cachedResults$data[[lbl]]
|
447 |
+
validate(need(!is.null(res), "No finished result selected."))
|
448 |
+
res
|
449 |
})
|
450 |
|
451 |
+
# ---- Outputs -------------------------------------------------------------
|
452 |
output$strategy_plot <- renderPlot({
|
453 |
+
res <- selectedResult()
|
454 |
+
plot_factor(res$pi_star_point, res$pi_star_se,
|
455 |
+
factor_name = input$factor,
|
456 |
+
n_strategies = res$n_strategies)
|
|
|
|
|
|
|
|
|
|
|
457 |
})
|
458 |
|
|
|
459 |
output$q_value <- renderText({
|
460 |
+
res <- selectedResult()
|
461 |
+
q_pt <- res$Q_point; q_se <- res$Q_se
|
462 |
+
txt <- if (length(q_se) && q_se > 0)
|
463 |
+
sprintf("Estimated Q Value: %.3f ± %.3f", q_pt, 1.96*q_se)
|
464 |
+
else sprintf("Estimated Q Value: %.3f", q_pt)
|
465 |
+
sprintf("%s (Runtime: %.2f s)", txt, res$runtime_seconds)
|
|
|
|
|
|
|
|
|
466 |
})
|
467 |
|
468 |
+
output$selection_summary <- renderText({ input$previousResults })
|
|
|
|
|
|
|
469 |
}
|
470 |
|
471 |
+
# =============================================================================
|
472 |
+
# Run the app
|
473 |
+
# =============================================================================
|
474 |
shinyApp(ui, server)
|
|