Spaces:
Running
Running
Create warmup/app_v1.R
Browse files- warmup/app_v1.R +527 -0
warmup/app_v1.R
ADDED
@@ -0,0 +1,527 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# setwd("~/Dropbox/OptimizingSI/Analysis/ono")
|
2 |
+
# install.packages( "~/Documents/strategize-software/strategize", repos = NULL, type = "source",force = F)
|
3 |
+
# Script: app_ono.R
|
4 |
+
|
5 |
+
options(error = NULL)
|
6 |
+
library(shiny)
|
7 |
+
library(ggplot2)
|
8 |
+
library(strategize)
|
9 |
+
library(dplyr)
|
10 |
+
|
11 |
+
# Custom plotting function for optimal strategy distributions
|
12 |
+
plot_factor <- function(pi_star_list,
|
13 |
+
pi_star_se_list,
|
14 |
+
factor_name,
|
15 |
+
zStar = 1.96,
|
16 |
+
n_strategies = 1L) {
|
17 |
+
probs <- lapply(pi_star_list, function(x) x[[factor_name]])
|
18 |
+
ses <- lapply(pi_star_se_list, function(x) x[[factor_name]])
|
19 |
+
levels <- names(probs[[1]])
|
20 |
+
|
21 |
+
# Create data frame for plotting
|
22 |
+
df <- do.call(rbind, lapply(1:n_strategies, function(i) {
|
23 |
+
data.frame(
|
24 |
+
Strategy = if (n_strategies == 1) "Optimal" else c("Democrat", "Republican")[i],
|
25 |
+
Level = levels,
|
26 |
+
Probability = probs[[i]]
|
27 |
+
#SE = ses[[i]]
|
28 |
+
)
|
29 |
+
}))
|
30 |
+
|
31 |
+
# Manual dodging: Create numeric x-positions with offsets
|
32 |
+
df$Level_num <- as.numeric(as.factor(df$Level)) # Convert Level to numeric (1, 2, ...)
|
33 |
+
if (n_strategies == 1) {
|
34 |
+
df$x_dodged <- df$Level_num # No dodging for single strategy
|
35 |
+
} else {
|
36 |
+
# Apply ±offset for Democrat/Republican
|
37 |
+
df$x_dodged <- df$Level_num +
|
38 |
+
ifelse(df$Strategy == "Democrat",
|
39 |
+
-0.05, 0.05)
|
40 |
+
}
|
41 |
+
|
42 |
+
# Plot with ggplot2
|
43 |
+
p <- ggplot(df, aes(x = x_dodged,
|
44 |
+
y = Probability,
|
45 |
+
color = Strategy)) +
|
46 |
+
# Segment from y=0 to y=Probability
|
47 |
+
geom_segment(
|
48 |
+
aes(x = x_dodged, xend = x_dodged,
|
49 |
+
y = 0, yend = Probability),
|
50 |
+
size = 0.3
|
51 |
+
) +
|
52 |
+
# Point at the probability
|
53 |
+
geom_point(
|
54 |
+
size = 2.5
|
55 |
+
) +
|
56 |
+
# Text label above the point
|
57 |
+
geom_text(
|
58 |
+
aes(x = x_dodged,
|
59 |
+
label = sprintf("%.2f", Probability)),
|
60 |
+
vjust = -0.7,
|
61 |
+
size = 3
|
62 |
+
) +
|
63 |
+
# Set x-axis with original Level labels
|
64 |
+
scale_x_continuous(
|
65 |
+
breaks = unique(df$Level_num),
|
66 |
+
labels = unique(df$Level),
|
67 |
+
limits = c(min(df$x_dodged)-0.20,
|
68 |
+
max(df$x_dodged)+0.20)
|
69 |
+
) +
|
70 |
+
# Labels
|
71 |
+
labs(
|
72 |
+
title = "Optimal Distribution for:",
|
73 |
+
subtitle = sprintf("*%s*", gsub(factor_name,
|
74 |
+
pattern = "\\.",
|
75 |
+
replace = " ")),
|
76 |
+
x = "Level",
|
77 |
+
y = "Probability"
|
78 |
+
) +
|
79 |
+
# Apply Tufte's minimalistic theme
|
80 |
+
theme_minimal(base_size = 18,
|
81 |
+
base_line_size = 0) +
|
82 |
+
theme(
|
83 |
+
legend.position = "none",
|
84 |
+
legend.title = element_blank(),
|
85 |
+
panel.grid.major = element_blank(),
|
86 |
+
panel.grid.minor = element_blank(),
|
87 |
+
axis.line = element_line(color = "black", size = 0.5),
|
88 |
+
axis.text.x = element_text(angle = 45,
|
89 |
+
hjust = 1,
|
90 |
+
margin = margin(r = 10)) # Add right margin
|
91 |
+
) +
|
92 |
+
# Manual color scale for different strategies
|
93 |
+
scale_color_manual(values = c("Democrat" = "#89cff0",
|
94 |
+
"Republican" = "red",
|
95 |
+
"Optimal" = "black"))
|
96 |
+
|
97 |
+
return(p)
|
98 |
+
}
|
99 |
+
|
100 |
+
# UI Definition
|
101 |
+
ui <- fluidPage(
|
102 |
+
titlePanel("Exploring strategize with the candidate choice conjoint data"),
|
103 |
+
|
104 |
+
tags$p(
|
105 |
+
style = "text-align: left; margin-top: -10px;",
|
106 |
+
tags$a(
|
107 |
+
href = "https://strategizelab.org/",
|
108 |
+
target = "_blank",
|
109 |
+
title = "strategizelab.org",
|
110 |
+
style = "color: #337ab7; text-decoration: none;",
|
111 |
+
"strategizelab.org ",
|
112 |
+
icon("external-link", style = "font-size: 12px;")
|
113 |
+
)
|
114 |
+
),
|
115 |
+
|
116 |
+
# ---- Minimal "Share" button HTML + JS inlined ----
|
117 |
+
tags$div(
|
118 |
+
style = "text-align: left; margin: 0.5em 0 0.5em 0em;",
|
119 |
+
HTML('
|
120 |
+
<button id="share-button"
|
121 |
+
style="
|
122 |
+
display: inline-flex;
|
123 |
+
align-items: center;
|
124 |
+
justify-content: center;
|
125 |
+
gap: 8px;
|
126 |
+
padding: 5px 10px;
|
127 |
+
font-size: 16px;
|
128 |
+
font-weight: normal;
|
129 |
+
color: #000;
|
130 |
+
background-color: #fff;
|
131 |
+
border: 1px solid #ddd;
|
132 |
+
border-radius: 6px;
|
133 |
+
cursor: pointer;
|
134 |
+
box-shadow: 0 1.5px 0 #000;
|
135 |
+
">
|
136 |
+
<svg width="18" height="18" viewBox="0 0 24 24" fill="none" stroke="currentColor"
|
137 |
+
stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
138 |
+
<circle cx="18" cy="5" r="3"></circle>
|
139 |
+
<circle cx="6" cy="12" r="3"></circle>
|
140 |
+
<circle cx="18" cy="19" r="3"></circle>
|
141 |
+
<line x1="8.59" y1="13.51" x2="15.42" y2="17.49"></line>
|
142 |
+
<line x1="15.41" y1="6.51" x2="8.59" y2="10.49"></line>
|
143 |
+
</svg>
|
144 |
+
<strong>Share</strong>
|
145 |
+
</button>
|
146 |
+
'),
|
147 |
+
tags$script(
|
148 |
+
HTML("
|
149 |
+
(function() {
|
150 |
+
const shareBtn = document.getElementById('share-button');
|
151 |
+
// Reusable helper function to show a small “Copied!” message
|
152 |
+
function showCopyNotification() {
|
153 |
+
const notification = document.createElement('div');
|
154 |
+
notification.innerText = 'Copied to clipboard';
|
155 |
+
notification.style.position = 'fixed';
|
156 |
+
notification.style.bottom = '20px';
|
157 |
+
notification.style.right = '20px';
|
158 |
+
notification.style.backgroundColor = 'rgba(0, 0, 0, 0.8)';
|
159 |
+
notification.style.color = '#fff';
|
160 |
+
notification.style.padding = '8px 12px';
|
161 |
+
notification.style.borderRadius = '4px';
|
162 |
+
notification.style.zIndex = '9999';
|
163 |
+
document.body.appendChild(notification);
|
164 |
+
setTimeout(() => { notification.remove(); }, 2000);
|
165 |
+
}
|
166 |
+
shareBtn.addEventListener('click', function() {
|
167 |
+
const currentURL = window.location.href;
|
168 |
+
const pageTitle = document.title || 'Check this out!';
|
169 |
+
// If browser supports Web Share API
|
170 |
+
if (navigator.share) {
|
171 |
+
navigator.share({
|
172 |
+
title: pageTitle,
|
173 |
+
text: '',
|
174 |
+
url: currentURL
|
175 |
+
})
|
176 |
+
.catch((error) => {
|
177 |
+
console.log('Sharing failed', error);
|
178 |
+
});
|
179 |
+
} else {
|
180 |
+
// Fallback: Copy URL
|
181 |
+
if (navigator.clipboard && navigator.clipboard.writeText) {
|
182 |
+
navigator.clipboard.writeText(currentURL).then(() => {
|
183 |
+
showCopyNotification();
|
184 |
+
}, (err) => {
|
185 |
+
console.error('Could not copy text: ', err);
|
186 |
+
});
|
187 |
+
} else {
|
188 |
+
// Double fallback for older browsers
|
189 |
+
const textArea = document.createElement('textarea');
|
190 |
+
textArea.value = currentURL;
|
191 |
+
document.body.appendChild(textArea);
|
192 |
+
textArea.select();
|
193 |
+
try {
|
194 |
+
document.execCommand('copy');
|
195 |
+
showCopyNotification();
|
196 |
+
} catch (err) {
|
197 |
+
alert('Please copy this link:\\n' + currentURL);
|
198 |
+
}
|
199 |
+
document.body.removeChild(textArea);
|
200 |
+
}
|
201 |
+
}
|
202 |
+
});
|
203 |
+
})();
|
204 |
+
")
|
205 |
+
)
|
206 |
+
),
|
207 |
+
# ---- End: Minimal Share button snippet ----
|
208 |
+
|
209 |
+
sidebarLayout(
|
210 |
+
sidebarPanel(
|
211 |
+
h4("Analysis Options"),
|
212 |
+
radioButtons("case_type", "Case Type:",
|
213 |
+
choices = c("Average", "Adversarial"),
|
214 |
+
selected = "Average"),
|
215 |
+
conditionalPanel(
|
216 |
+
condition = "input.case_type == 'Average'",
|
217 |
+
selectInput("respondent_group", "Respondent Group:",
|
218 |
+
choices = c("All", "Democrat", "Independent", "Republican"),
|
219 |
+
selected = "All")
|
220 |
+
),
|
221 |
+
numericInput("lambda_input", "Lambda (regularization):",
|
222 |
+
value = 0.01, min = 1e-6, max = 10, step = 0.01),
|
223 |
+
actionButton("compute", "Compute Results", class = "btn-primary"),
|
224 |
+
hr(),
|
225 |
+
h4("Visualization"),
|
226 |
+
selectInput("factor", "Select Factor to Display:",
|
227 |
+
choices = NULL),
|
228 |
+
br(),
|
229 |
+
selectInput("previousResults", "View Previous Results:",
|
230 |
+
choices = NULL),
|
231 |
+
hr(),
|
232 |
+
h5("Instructions:"),
|
233 |
+
p("1. Select a case type and, for Average case, a respondent group."),
|
234 |
+
p("2. Specify the single lambda to be used by strategize."),
|
235 |
+
p("3. Click 'Compute Results' to generate optimal strategies."),
|
236 |
+
p("4. Choose a factor to view its distribution."),
|
237 |
+
p("5. Use 'View Previous Results' to toggle among past computations.")
|
238 |
+
),
|
239 |
+
|
240 |
+
mainPanel(
|
241 |
+
tabsetPanel(
|
242 |
+
tabPanel("Optimal Strategy Plot",
|
243 |
+
plotOutput("strategy_plot", height = "600px")),
|
244 |
+
tabPanel("Q Value",
|
245 |
+
verbatimTextOutput("q_value"),
|
246 |
+
p("Q represents the estimated outcome
|
247 |
+
under the optimal strategy, with 95% confidence interval.")),
|
248 |
+
tabPanel("About",
|
249 |
+
h3("About this page"),
|
250 |
+
p("This page app explores the ",
|
251 |
+
a("strategize R package", href = "https://github.com/cjerzak/strategize-software/", target = "_blank"),
|
252 |
+
" using Ono forced conjoint experimental data.
|
253 |
+
It computes optimal strategies for Average (optimizing for a respondent group)
|
254 |
+
and Adversarial (optimizing for both parties in competition) cases on the fly."),
|
255 |
+
p(strong("Average Case:"),
|
256 |
+
"Optimizes candidate characteristics for a selected respondent group."),
|
257 |
+
p(strong("Adversarial Case:"),
|
258 |
+
"Finds equilibrium strategies for Democrats and Republicans."),
|
259 |
+
p(strong("More information:"),
|
260 |
+
a("strategizelab.org", href = "https://strategizelab.org", target = "_blank"))
|
261 |
+
)
|
262 |
+
),
|
263 |
+
br(),
|
264 |
+
wellPanel(
|
265 |
+
h4("Currently Selected Computation:"),
|
266 |
+
verbatimTextOutput("selection_summary")
|
267 |
+
)
|
268 |
+
)
|
269 |
+
)
|
270 |
+
)
|
271 |
+
|
272 |
+
# Server Definition
|
273 |
+
server <- function(input, output, session) {
|
274 |
+
# Load data
|
275 |
+
load("Processed_OnoData.RData")
|
276 |
+
Primary2016 <- read.csv("PrimaryCandidates2016 - Sheet1.csv")
|
277 |
+
|
278 |
+
# Prepare a storage structure for caching multiple results
|
279 |
+
cachedResults <- reactiveValues(data = list())
|
280 |
+
|
281 |
+
# Dynamic update of factor choices
|
282 |
+
observe({
|
283 |
+
if (input$case_type == "Average") {
|
284 |
+
factors <- colnames(FACTOR_MAT_FULL)[!colnames(FACTOR_MAT_FULL) %in% c("Office")]
|
285 |
+
} else {
|
286 |
+
factors <- colnames(FACTOR_MAT_FULL)[!colnames(FACTOR_MAT_FULL) %in% c("Office", "Party.affiliation", "Party.competition")]
|
287 |
+
}
|
288 |
+
updateSelectInput(session, "factor", choices = factors, selected = factors[1])
|
289 |
+
})
|
290 |
+
|
291 |
+
# Observe "Compute Results" button to generate a new result and cache it
|
292 |
+
observeEvent(input$compute, {
|
293 |
+
withProgress(message = "Computing optimal strategies...", value = 0, {
|
294 |
+
incProgress(0.2, detail = "Preparing data...")
|
295 |
+
|
296 |
+
# Common hyperparameters
|
297 |
+
params <- list(
|
298 |
+
nSGD = 1000L,
|
299 |
+
batch_size = 50L,
|
300 |
+
penalty_type = "KL",
|
301 |
+
nFolds = 3L,
|
302 |
+
use_optax = TRUE,
|
303 |
+
compute_se = FALSE, # Set to FALSE for quicker results
|
304 |
+
conf_level = 0.95,
|
305 |
+
conda_env = "strategize",
|
306 |
+
conda_env_required = TRUE
|
307 |
+
)
|
308 |
+
|
309 |
+
# Grab the single user-chosen lambda
|
310 |
+
my_lambda <- input$lambda_input
|
311 |
+
|
312 |
+
# We'll define a label to track the result uniquely
|
313 |
+
# Include the case type, group (if Average), and lambda in the label
|
314 |
+
if (input$case_type == "Average") {
|
315 |
+
label <- paste("Case=Average, Group=", input$respondent_group, ", Lambda=", my_lambda, sep="")
|
316 |
+
} else {
|
317 |
+
label <- paste("Case=Adversarial, Lambda=", my_lambda, sep="")
|
318 |
+
}
|
319 |
+
|
320 |
+
strategize_start <- Sys.time() # Timing strategize start
|
321 |
+
if (input$case_type == "Average") {
|
322 |
+
# Subset data for Average case
|
323 |
+
if (input$respondent_group == "All") {
|
324 |
+
indices <- which(my_data$Office == "President")
|
325 |
+
} else {
|
326 |
+
indices <- which(
|
327 |
+
my_data_FULL$R_Partisanship == input$respondent_group &
|
328 |
+
my_data$Office == "President"
|
329 |
+
)
|
330 |
+
}
|
331 |
+
|
332 |
+
FACTOR_MAT <- FACTOR_MAT_FULL[indices,
|
333 |
+
!colnames(FACTOR_MAT_FULL) %in%
|
334 |
+
c("Office","Party.affiliation","Party.competition")]
|
335 |
+
Yobs <- Yobs_FULL[indices]
|
336 |
+
X <- X_FULL[indices, ]
|
337 |
+
log_pr_w <- log_pr_w_FULL[indices]
|
338 |
+
pair_id <- pair_id_FULL[indices]
|
339 |
+
assignmentProbList <- assignmentProbList_FULL[names(FACTOR_MAT)]
|
340 |
+
|
341 |
+
incProgress(0.4,
|
342 |
+
detail = "Running strategize...")
|
343 |
+
|
344 |
+
# Compute with strategize
|
345 |
+
Qoptimized <- strategize(
|
346 |
+
Y = Yobs,
|
347 |
+
W = FACTOR_MAT,
|
348 |
+
X = X,
|
349 |
+
pair_id = pair_id,
|
350 |
+
|
351 |
+
p_list = assignmentProbList[colnames(FACTOR_MAT)],
|
352 |
+
lambda = my_lambda,
|
353 |
+
diff = TRUE,
|
354 |
+
adversarial = FALSE,
|
355 |
+
use_regularization = TRUE,
|
356 |
+
K = 1L,
|
357 |
+
nSGD = params$nSGD,
|
358 |
+
penalty_type = params$penalty_type,
|
359 |
+
folds = params$nFolds,
|
360 |
+
use_optax = params$use_optax,
|
361 |
+
compute_se = params$compute_se,
|
362 |
+
conf_level = params$conf_level,
|
363 |
+
conda_env = params$conda_env,
|
364 |
+
conda_env_required = params$conda_env_required
|
365 |
+
)
|
366 |
+
Qoptimized$n_strategies <- 1L
|
367 |
+
}
|
368 |
+
if (input$case_type == "Adversarial"){
|
369 |
+
# Adversarial case
|
370 |
+
|
371 |
+
DROP_FACTORS <- c("Office", "Party.affiliation", "Party.competition")
|
372 |
+
FACTOR_MAT <- FACTOR_MAT_FULL[, !colnames(FACTOR_MAT_FULL) %in% DROP_FACTORS]
|
373 |
+
Yobs <- Yobs_FULL
|
374 |
+
X <- X_FULL
|
375 |
+
log_pr_w <- log_pr_w_FULL
|
376 |
+
assignmentProbList <- assignmentProbList_FULL[!names(assignmentProbList_FULL) %in% DROP_FACTORS]
|
377 |
+
|
378 |
+
incProgress(0.3, detail = "Preparing slate data...")
|
379 |
+
|
380 |
+
FactorOptions <- apply(FACTOR_MAT, 2, table)
|
381 |
+
prior_alpha <- 10
|
382 |
+
Primary_D <- Primary2016[Primary2016$Party == "Democratic", colnames(FACTOR_MAT)]
|
383 |
+
Primary_R <- Primary2016[Primary2016$Party == "Republican", colnames(FACTOR_MAT)]
|
384 |
+
|
385 |
+
Primary_D_slate <- lapply(colnames(Primary_D), function(col) {
|
386 |
+
posterior_alpha <- FactorOptions[[col]]; posterior_alpha[] <- prior_alpha
|
387 |
+
Empirical_ <- table(Primary_D[[col]])
|
388 |
+
Empirical_ <- Empirical_[names(Empirical_) != "Unclear"]
|
389 |
+
posterior_alpha[names(Empirical_)] <- posterior_alpha[names(Empirical_)] + Empirical_
|
390 |
+
prop.table(posterior_alpha)
|
391 |
+
})
|
392 |
+
names(Primary_D_slate) <- colnames(Primary_D)
|
393 |
+
|
394 |
+
Primary_R_slate <- lapply(colnames(Primary_R), function(col) {
|
395 |
+
posterior_alpha <- FactorOptions[[col]]; posterior_alpha[] <- prior_alpha
|
396 |
+
Empirical_ <- table(Primary_R[[col]])
|
397 |
+
Empirical_ <- Empirical_[names(Empirical_) != "Unclear"]
|
398 |
+
posterior_alpha[names(Empirical_)] <- posterior_alpha[names(Empirical_)] + Empirical_
|
399 |
+
prop.table(posterior_alpha)
|
400 |
+
})
|
401 |
+
names(Primary_R_slate) <- colnames(Primary_R)
|
402 |
+
|
403 |
+
slate_list <- list("Democratic" = Primary_D_slate, "Republican" = Primary_R_slate)
|
404 |
+
|
405 |
+
indices <- which(
|
406 |
+
my_data$R_Partisanship %in% c("Republican","Democrat") &
|
407 |
+
my_data$Office == "President"
|
408 |
+
)
|
409 |
+
FACTOR_MAT <- FACTOR_MAT_FULL[indices,
|
410 |
+
!colnames(FACTOR_MAT_FULL) %in% c("Office","Party.competition","Party.affiliation")]
|
411 |
+
Yobs <- Yobs_FULL[indices]
|
412 |
+
my_data_red <- my_data_FULL[indices,]
|
413 |
+
pair_id <- pair_id_FULL[indices]
|
414 |
+
cluster_var <- cluster_var_FULL[indices]
|
415 |
+
my_data_red$Party.affiliation_clean <- ifelse(
|
416 |
+
my_data_red$Party.affiliation == "Republican Party",
|
417 |
+
yes = "Republican",
|
418 |
+
no = ifelse(my_data_red$Party.affiliation == "Democratic Party","Democrat","Independent")
|
419 |
+
)
|
420 |
+
|
421 |
+
assignmentProbList <- assignmentProbList_FULL[colnames(FACTOR_MAT)]
|
422 |
+
slate_list$Democratic <- slate_list$Democratic[names(assignmentProbList)]
|
423 |
+
slate_list$Republican <- slate_list$Republican[names(assignmentProbList)]
|
424 |
+
|
425 |
+
incProgress(0.4, detail = "Running strategize...")
|
426 |
+
|
427 |
+
Qoptimized <- strategize(
|
428 |
+
Y = Yobs,
|
429 |
+
W = FACTOR_MAT,
|
430 |
+
X = NULL,
|
431 |
+
p_list = assignmentProbList,
|
432 |
+
slate_list = slate_list,
|
433 |
+
varcov_cluster_variable = cluster_var,
|
434 |
+
competing_group_variable_respondent = my_data_red$R_Partisanship,
|
435 |
+
competing_group_variable_candidate = my_data_red$Party.affiliation_clean,
|
436 |
+
competing_group_competition_variable_candidate = my_data_red$Party.competition,
|
437 |
+
pair_id = pair_id,
|
438 |
+
respondent_id = my_data_red$respondentIndex,
|
439 |
+
respondent_task_id = my_data_red$task,
|
440 |
+
profile_order = my_data_red$profile,
|
441 |
+
|
442 |
+
lambda = my_lambda,
|
443 |
+
diff = TRUE,
|
444 |
+
use_regularization = TRUE,
|
445 |
+
force_gaussian = FALSE,
|
446 |
+
adversarial = TRUE,
|
447 |
+
K = 1L,
|
448 |
+
nMonte_adversarial = 20L,
|
449 |
+
nSGD = params$nSGD,
|
450 |
+
penalty_type = params$penalty_type,
|
451 |
+
learning_rate_max = 0.001,
|
452 |
+
use_optax = params$use_optax,
|
453 |
+
compute_se = params$compute_se,
|
454 |
+
conf_level = params$conf_level,
|
455 |
+
conda_env = params$conda_env,
|
456 |
+
conda_env_required = params$conda_env_required
|
457 |
+
)
|
458 |
+
# check correlation between strategies to diagnose optimization issues
|
459 |
+
# plot(unlist(Qoptimized$pi_star_point$Democrat), unlist(Qoptimized$pi_star_point$Republican))
|
460 |
+
Qoptimized$n_strategies <- 2L
|
461 |
+
}
|
462 |
+
Qoptimized$runtime_seconds <- as.numeric(difftime(Sys.time(),
|
463 |
+
strategize_start,
|
464 |
+
units = "secs"))
|
465 |
+
|
466 |
+
Qoptimized <- Qoptimized[c("pi_star_point",
|
467 |
+
"pi_star_se",
|
468 |
+
"Q_point",
|
469 |
+
"Q_se",
|
470 |
+
"n_strategies",
|
471 |
+
"runtime_seconds")]
|
472 |
+
|
473 |
+
incProgress(0.8, detail = "Finalizing results...")
|
474 |
+
|
475 |
+
# Store in the reactiveValues cache
|
476 |
+
cachedResults$data[[label]] <- Qoptimized
|
477 |
+
|
478 |
+
# Update the choice list for previous results
|
479 |
+
updateSelectInput(session, "previousResults",
|
480 |
+
choices = names(cachedResults$data),
|
481 |
+
selected = label)
|
482 |
+
})
|
483 |
+
})
|
484 |
+
|
485 |
+
# Reactive to pick the result the user wants to display
|
486 |
+
selectedResult <- reactive({
|
487 |
+
validate(
|
488 |
+
need(input$previousResults != "", "No result computed or selected yet.")
|
489 |
+
)
|
490 |
+
cachedResults$data[[input$previousResults]]
|
491 |
+
})
|
492 |
+
|
493 |
+
# Render strategy plot
|
494 |
+
output$strategy_plot <- renderPlot({
|
495 |
+
req(selectedResult())
|
496 |
+
factor_name <- input$factor
|
497 |
+
pi_star_list <- selectedResult()$pi_star_point
|
498 |
+
pi_star_se_list <- selectedResult()$pi_star_se
|
499 |
+
n_strategies <- selectedResult()$n_strategies
|
500 |
+
plot_factor(pi_star_list = pi_star_list,
|
501 |
+
pi_star_se_list = pi_star_se_list,
|
502 |
+
factor_name = factor_name,
|
503 |
+
n_strategies = n_strategies)
|
504 |
+
})
|
505 |
+
|
506 |
+
# Render Q value
|
507 |
+
output$q_value <- renderText({
|
508 |
+
req(selectedResult())
|
509 |
+
q_point <- selectedResult()$Q_point
|
510 |
+
q_se <- selectedResult()$Q_se
|
511 |
+
show_se <- length(q_se) > 0
|
512 |
+
if(show_se){ show_se <- q_se > 0 }
|
513 |
+
if(!show_se){ render_text <- paste("Estimated Q Value:", sprintf("%.3f", q_point)) }
|
514 |
+
if(show_se){ render_text <- paste("Estimated Q Value:", sprintf("%.3f ± %.3f", q_point, 1.96 * q_se)) }
|
515 |
+
sprintf("%s (Runtime: %.3f s)",
|
516 |
+
render_text,
|
517 |
+
selectedResult()$runtime_seconds)
|
518 |
+
})
|
519 |
+
|
520 |
+
# Show which set of parameters (label) is currently selected
|
521 |
+
output$selection_summary <- renderText({
|
522 |
+
input$previousResults
|
523 |
+
})
|
524 |
+
}
|
525 |
+
|
526 |
+
# Run the app
|
527 |
+
shinyApp(ui, server)
|