Spaces:
Running
Running
File size: 20,227 Bytes
2e34193 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
# setwd("~/Dropbox/OptimizingSI/Analysis/ono")
# install.packages("~/Documents/strategize-software/strategize", repos = NULL, type = "source", force = FALSE)
# =============================================================================
# app_ono.R
# Async, navigation‑friendly Shiny demo for strategize‑Ono
# ---------------------------------------------------------------------------
# * Heavy strategize jobs run in a background R session via future/promises.
# * UI stays responsive; you can browse old results while a new run crunches.
# * STARTUP‑SAFE and INPUT‑SAFE:
# • req(input$case_type) prevents length‑zero error.
# • Reactive inputs are captured (isolated) *before* the future() call,
# fixing “Can't access reactive value outside reactive consumer.”
# =============================================================================
options(error = NULL)
library(shiny)
library(ggplot2)
library(strategize)
library(dplyr)
# ---- Async helpers ----------------------------------------------------------
library(promises)
library(future) ; plan(multisession) # 1 worker per core
library(shinyjs)
# =============================================================================
# Custom plotting function (unchanged)
# =============================================================================
plot_factor <- function(pi_star_list,
pi_star_se_list,
factor_name,
zStar = 1.96,
n_strategies = 1L) {
probs <- lapply(pi_star_list, function(x) x[[factor_name]])
ses <- lapply(pi_star_se_list, function(x) x[[factor_name]])
levels <- names(probs[[1]])
df <- do.call(rbind, lapply(seq_len(n_strategies), function(i) {
data.frame(
Strategy = if (n_strategies == 1) "Optimal"
else c("Democrat", "Republican")[i],
Level = levels,
Probability = probs[[i]]
)
}))
df$Level_num <- as.numeric(as.factor(df$Level))
df$x_dodged <- if (n_strategies == 1)
df$Level_num
else
df$Level_num + ifelse(df$Strategy == "Democrat", -0.05, 0.05)
ggplot(df, aes(x = x_dodged, y = Probability, color = Strategy)) +
geom_segment(aes(x = x_dodged, xend = x_dodged,
y = 0, yend = Probability), size = 0.3) +
geom_point(size = 2.5) +
geom_text(aes(label = sprintf("%.2f", Probability)),
vjust = -0.7, size = 3) +
scale_x_continuous(breaks = unique(df$Level_num),
labels = unique(df$Level),
limits = c(min(df$x_dodged) - 0.20,
max(df$x_dodged) + 0.20)) +
labs(title = "Optimal Distribution for:",
subtitle = sprintf("*%s*",
gsub(factor_name, pattern = "\\.", replace = " ")),
x = "Level",
y = "Probability") +
theme_minimal(base_size = 18) +
theme(legend.position = "none",
legend.title = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.line = element_line(color = "black", size = 0.5),
axis.text.x = element_text(angle = 45, hjust = 1,
margin = margin(r = 10))) +
scale_color_manual(values = c(Democrat = "#89cff0",
Republican = "red",
Optimal = "black"))
}
# =============================================================================
# UI (identical to previous async version—only shinyjs::useShinyjs() added)
# =============================================================================
ui <- fluidPage(
useShinyjs(),
titlePanel("Exploring strategize with the candidate choice conjoint data"),
tags$p(
style = "text-align: left; margin-top: -10px;",
tags$a(href = "https://strategizelab.org/",
target = "_blank",
title = "strategizelab.org",
style = "color: #337ab7; text-decoration: none;",
"strategizelab.org ",
icon("external-link", style = "font-size: 12px;"))
),
# ---- Share button (unchanged) --------------------------------------------
tags$div(
style = "text-align: left; margin: 0.5em 0 0.5em 0em;",
HTML('
<button id="share-button"
style="
display: inline-flex;
align-items: center;
justify-content: center;
gap: 8px;
padding: 5px 10px;
font-size: 16px;
font-weight: normal;
color: #000;
background-color: #fff;
border: 1px solid #ddd;
border-radius: 6px;
cursor: pointer;
box-shadow: 0 1.5px 0 #000;
">
<svg width="18" height="18" viewBox="0 0 24 24" fill="none"
stroke="currentColor" stroke-width="2" stroke-linecap="round"
stroke-linejoin="round">
<circle cx="18" cy="5" r="3"></circle>
<circle cx="6" cy="12" r="3"></circle>
<circle cx="18" cy="19" r="3"></circle>
<line x1="8.59" y1="13.51" x2="15.42" y2="17.49"></line>
<line x1="15.41" y1="6.51" x2="8.59" y2="10.49"></line>
</svg>
<strong>Share</strong>
</button>
'),
tags$script(
HTML("
(function() {
const shareBtn = document.getElementById('share-button');
function toast() {
const n = document.createElement('div');
n.innerText = 'Copied to clipboard';
Object.assign(n.style, {
position:'fixed',bottom:'20px',right:'20px',
background:'rgba(0,0,0,0.8)',color:'#fff',
padding:'8px 12px',borderRadius:'4px',zIndex:9999});
document.body.appendChild(n); setTimeout(()=>n.remove(),2000);
}
shareBtn.addEventListener('click', ()=>{
const url = window.location.href;
if (navigator.share) {
navigator.share({title:document.title||'Link',url})
.catch(()=>{});
} else if (navigator.clipboard) {
navigator.clipboard.writeText(url).then(toast);
} else {
const ta = document.createElement('textarea');
ta.value=url; document.body.appendChild(ta); ta.select();
try{document.execCommand('copy'); toast();}
catch(e){alert('Copy this link:\\n'+url);} ta.remove();
}
});
})();")
)
),
sidebarLayout(
sidebarPanel(
h4("Analysis Options"),
radioButtons("case_type", "Case Type:",
choices = c("Average", "Adversarial"),
selected = "Average"),
conditionalPanel(
condition = "input.case_type == 'Average'",
selectInput("respondent_group", "Respondent Group:",
choices = c("All", "Democrat", "Independent", "Republican"),
selected = "Democrat")
),
numericInput("lambda_input", "Lambda (regularization):",
value = 0.01, min = 1e-6, max = 10, step = 0.01),
actionButton("compute", "Compute Results", class = "btn-primary"),
div(id = "status_text",
style = "margin-top:6px; font-style:italic; color:#555;"),
hr(),
h4("Visualization"),
selectInput("factor", "Select Factor to Display:", choices = NULL),
br(),
selectInput("previousResults", "View Previous Results:", choices = NULL),
hr(),
h5("Instructions:"),
p("1. Select a case type and, for Average case, a respondent group."),
p("2. Specify the single lambda to be used by strategize."),
p("3. Click 'Compute Results' to generate optimal strategies."),
p("4. Choose a factor to view its distribution."),
p("5. Use 'View Previous Results' to toggle among past computations.")
),
mainPanel(
tabsetPanel(
tabPanel("Optimal Strategy Plot",
plotOutput("strategy_plot", height = "600px")),
tabPanel("Q Value",
verbatimTextOutput("q_value"),
p("Q represents the estimated outcome under the optimal strategy,",
"with 95% confidence interval.")),
tabPanel("About",
h3("About this page"),
p("This page app explores the ",
a("strategize R package",
href = "https://github.com/cjerzak/strategize-software/",
target = "_blank"),
" using Ono forced conjoint experimental data.",
"It computes optimal strategies for Average (optimizing for a respondent",
"group) and Adversarial (optimizing for both parties in competition) cases",
"on the fly."),
p(strong("Average Case:"), "Optimizes candidate characteristics for a",
"selected respondent group."),
p(strong("Adversarial Case:"), "Finds equilibrium strategies for Democrats",
"and Republicans."),
p(strong("More information:"),
a("strategizelab.org", href = "https://strategizelab.org",
target = "_blank"))
)
),
br(),
wellPanel(
h4("Currently Selected Computation:"),
verbatimTextOutput("selection_summary")
)
)
)
)
# =============================================================================
# SERVER
# =============================================================================
server <- function(input, output, session) {
# ---- Data load (unchanged) -----------------------------------------------
load("Processed_OnoData.RData")
Primary2016 <- read.csv("PrimaryCandidates2016 - Sheet1.csv")
# ---- Reactive stores ------------------------------------------------------
cachedResults <- reactiveValues(data = list())
runningFlags <- reactiveValues(active = list())
# ---- Factor dropdown updater ---------------------------------------------
observe({
req(input$case_type)
if (input$case_type == "Average") {
factors <- setdiff(colnames(FACTOR_MAT_FULL), "Office")
} else {
factors <- setdiff(colnames(FACTOR_MAT_FULL),
c("Office", "Party.affiliation", "Party.competition"))
}
updateSelectInput(session, "factor",
choices = factors,
selected = factors[1])
})
# ===========================================================================
# Compute Results button
# ===========================================================================
observeEvent(input$compute, {
## ---- CAPTURE reactive inputs ------------------------------------------
case_type <- isolate(input$case_type)
respondent_group <- isolate(input$respondent_group)
my_lambda <- isolate(input$lambda_input)
label <- if (case_type == "Average") {
paste0("Case=Average, Group=", respondent_group,
", Lambda=", my_lambda)
} else {
paste0("Case=Adversarial, Lambda=", my_lambda)
}
runningFlags$active[[label]] <- TRUE
cachedResults$data[[label]] <- NULL
updateSelectInput(session, "previousResults",
choices = names(cachedResults$data),
selected = label)
shinyjs::html("status_text", "")
shinyjs::html("status_text", "submitting…") # Immediately show “submitting…”
shinyjs::delay(2000, shinyjs::html("status_text", "submitted")) # Two‑second later switch to “submitted”
shinyjs::disable("compute")
showNotification(sprintf("Job '%s' submitted …", label),
type = "message", duration = 3)
## ---- FUTURE -----------------------------------------------------------
future({
strategize_start <- Sys.time()
# --------------- shared hyper‑params ----------------------------------
params <- list(
nSGD = 1000L,
batch_size = 50L,
penalty_type = "KL",
nFolds = 3L,
use_optax = TRUE,
compute_se = FALSE,
conf_level = 0.95,
conda_env = "strategize",
conda_env_required = TRUE
)
if (case_type == "Average") {
# ---------- Average case --------------------------------------------
indices <- if (respondent_group == "All") {
which(my_data$Office == "President")
} else {
which(my_data_FULL$R_Partisanship == respondent_group &
my_data$Office == "President")
}
FACTOR_MAT <- FACTOR_MAT_FULL[indices,
!colnames(FACTOR_MAT_FULL) %in%
c("Office", "Party.affiliation", "Party.competition")]
Yobs <- Yobs_FULL[indices]
X <- X_FULL[indices, ]
pair_id <- pair_id_FULL[indices]
assignmentProbList <- assignmentProbList_FULL[colnames(FACTOR_MAT)]
Qoptimized <- strategize(
Y = Yobs,
W = FACTOR_MAT,
X = X,
pair_id = pair_id,
p_list = assignmentProbList[colnames(FACTOR_MAT)],
lambda = my_lambda,
diff = TRUE,
adversarial = FALSE,
use_regularization = TRUE,
K = 1L,
nSGD = params$nSGD,
penalty_type = params$penalty_type,
folds = params$nFolds,
use_optax = params$use_optax,
compute_se = params$compute_se,
conf_level = params$conf_level,
conda_env = params$conda_env,
conda_env_required = params$conda_env_required
)
Qoptimized$n_strategies <- 1L
} else {
# ---------- Adversarial case ----------------------------------------
DROP <- c("Office", "Party.affiliation", "Party.competition")
FACTOR_MAT <- FACTOR_MAT_FULL[, !colnames(FACTOR_MAT_FULL) %in% DROP]
assignmentProbList <- assignmentProbList_FULL[!names(assignmentProbList_FULL) %in% DROP]
# Build Primary slates
FactorOptions <- apply(FACTOR_MAT, 2, table)
prior_alpha <- 10
Primary_D <- Primary2016[Primary2016$Party == "Democratic",
colnames(FACTOR_MAT)]
Primary_R <- Primary2016[Primary2016$Party == "Republican",
colnames(FACTOR_MAT)]
slate_fun <- function(df) {
lapply(colnames(df), function(col) {
post <- FactorOptions[[col]]; post[] <- prior_alpha
emp <- table(df[[col]]); emp <- emp[names(emp) != "Unclear"]
post[names(emp)] <- post[names(emp)] + emp
prop.table(post)
}) |> setNames(colnames(df))
}
slate_list <- list(Democratic = slate_fun(Primary_D),
Republican = slate_fun(Primary_R))
indices <- which(my_data$R_Partisanship %in% c("Republican", "Democrat") &
my_data$Office == "President")
FACTOR_MAT <- FACTOR_MAT_FULL[indices,
!colnames(FACTOR_MAT_FULL) %in%
c("Office", "Party.competition", "Party.affiliation")]
Yobs <- Yobs_FULL[indices]
my_data_red <- my_data_FULL[indices, ]
pair_id <- pair_id_FULL[indices]
cluster_var <- cluster_var_FULL[indices]
my_data_red$Party.affiliation_clean <-
ifelse(my_data_red$Party.affiliation == "Republican Party", "Republican",
ifelse(my_data_red$Party.affiliation == "Democratic Party","Democrat","Independent"))
assignmentProbList <- assignmentProbList_FULL[colnames(FACTOR_MAT)]
slate_list$Democratic <- slate_list$Democratic[names(assignmentProbList)]
slate_list$Republican <- slate_list$Republican[names(assignmentProbList)]
Qoptimized <- strategize(
Y = Yobs,
W = FACTOR_MAT,
X = NULL,
p_list = assignmentProbList,
slate_list = slate_list,
varcov_cluster_variable = cluster_var,
competing_group_variable_respondent = my_data_red$R_Partisanship,
competing_group_variable_candidate = my_data_red$Party.affiliation_clean,
competing_group_competition_variable_candidate =
my_data_red$Party.competition,
pair_id = pair_id,
respondent_id = my_data_red$respondentIndex,
respondent_task_id = my_data_red$task,
profile_order = my_data_red$profile,
lambda = my_lambda,
diff = TRUE,
use_regularization = TRUE,
force_gaussian = FALSE,
adversarial = TRUE,
K = 1L,
nMonte_adversarial = 20L,
nSGD = params$nSGD,
penalty_type = params$penalty_type,
learning_rate_max = 0.001,
use_optax = params$use_optax,
compute_se = params$compute_se,
conf_level = params$conf_level,
conda_env = params$conda_env,
conda_env_required = params$conda_env_required
)
Qoptimized$n_strategies <- 2L
}
Qoptimized$runtime_seconds <-
as.numeric(difftime(Sys.time(), strategize_start, units = "secs"))
Qoptimized[c("pi_star_point", "pi_star_se", "Q_point",
"Q_se", "n_strategies", "runtime_seconds")]
}) %...>% # success handler
(function(res) {
cachedResults$data[[label]] <- res
runningFlags$active[[label]] <- FALSE
updateSelectInput(session, "previousResults",
choices = names(cachedResults$data),
selected = label)
shinyjs::html("status_text", "complete!")
shinyjs::enable("compute")
showNotification(sprintf("Job '%s' finished (%.1f s).",
label, res$runtime_seconds),
type = "message", duration = 6)
}) %...!% # error handler
(function(err) {
runningFlags$active[[label]] <- FALSE
cachedResults$data[[label]] <- NULL
shinyjs::html("status_text", "error – see log")
shinyjs::enable("compute")
showNotification(paste("Error in", label, ":", err$message),
type = "error", duration = 8)
})
NULL # return value of observeEvent
})
# ---- Helper: fetch selected result or show waiting msg -------------------
selectedResult <- reactive({
lbl <- input$previousResults ; req(lbl)
if (isTRUE(runningFlags$active[[lbl]]))
validate("Computation is still running – please wait…")
res <- cachedResults$data[[lbl]]
validate(need(!is.null(res), "No finished result selected."))
res
})
# ---- Outputs -------------------------------------------------------------
output$strategy_plot <- renderPlot({
res <- selectedResult()
plot_factor(res$pi_star_point, res$pi_star_se,
factor_name = input$factor,
n_strategies = res$n_strategies)
})
output$q_value <- renderText({
res <- selectedResult()
q_pt <- res$Q_point; q_se <- res$Q_se
txt <- if (length(q_se) && q_se > 0)
sprintf("Estimated Q Value: %.3f ± %.3f", q_pt, 1.96*q_se)
else sprintf("Estimated Q Value: %.3f", q_pt)
sprintf("%s (Runtime: %.2f s)", txt, res$runtime_seconds)
})
output$selection_summary <- renderText({ input$previousResults })
}
# =============================================================================
# Run the app
# =============================================================================
shinyApp(ui, server)
|