Spaces:
Running
Running
Create app_v2.R
Browse files- warmup/app_v2.R +482 -0
warmup/app_v2.R
ADDED
@@ -0,0 +1,482 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# setwd("~/Dropbox/OptimizingSI/Analysis/ono")
|
2 |
+
# install.packages("~/Documents/strategize-software/strategize", repos = NULL, type = "source", force = FALSE)
|
3 |
+
|
4 |
+
# =============================================================================
|
5 |
+
# app_ono.R
|
6 |
+
# Async, navigation‑friendly Shiny demo for strategize‑Ono
|
7 |
+
# ---------------------------------------------------------------------------
|
8 |
+
# * Heavy strategize jobs run in a background R session via future/promises.
|
9 |
+
# * UI stays responsive; you can browse old results while a new run crunches.
|
10 |
+
# * STARTUP‑SAFE and INPUT‑SAFE:
|
11 |
+
# • req(input$case_type) prevents length‑zero error.
|
12 |
+
# • Reactive inputs are captured (isolated) *before* the future() call,
|
13 |
+
# fixing “Can't access reactive value outside reactive consumer.”
|
14 |
+
# =============================================================================
|
15 |
+
|
16 |
+
options(error = NULL)
|
17 |
+
|
18 |
+
library(shiny)
|
19 |
+
library(ggplot2)
|
20 |
+
library(strategize)
|
21 |
+
library(dplyr)
|
22 |
+
|
23 |
+
# ---- Async helpers ----------------------------------------------------------
|
24 |
+
library(promises)
|
25 |
+
library(future) ; plan(multisession) # 1 worker per core
|
26 |
+
library(shinyjs)
|
27 |
+
|
28 |
+
# =============================================================================
|
29 |
+
# Custom plotting function (unchanged)
|
30 |
+
# =============================================================================
|
31 |
+
plot_factor <- function(pi_star_list,
|
32 |
+
pi_star_se_list,
|
33 |
+
factor_name,
|
34 |
+
zStar = 1.96,
|
35 |
+
n_strategies = 1L) {
|
36 |
+
|
37 |
+
probs <- lapply(pi_star_list, function(x) x[[factor_name]])
|
38 |
+
ses <- lapply(pi_star_se_list, function(x) x[[factor_name]])
|
39 |
+
levels <- names(probs[[1]])
|
40 |
+
|
41 |
+
df <- do.call(rbind, lapply(seq_len(n_strategies), function(i) {
|
42 |
+
data.frame(
|
43 |
+
Strategy = if (n_strategies == 1) "Optimal"
|
44 |
+
else c("Democrat", "Republican")[i],
|
45 |
+
Level = levels,
|
46 |
+
Probability = probs[[i]]
|
47 |
+
)
|
48 |
+
}))
|
49 |
+
|
50 |
+
df$Level_num <- as.numeric(as.factor(df$Level))
|
51 |
+
df$x_dodged <- if (n_strategies == 1)
|
52 |
+
df$Level_num
|
53 |
+
else
|
54 |
+
df$Level_num + ifelse(df$Strategy == "Democrat", -0.05, 0.05)
|
55 |
+
|
56 |
+
ggplot(df, aes(x = x_dodged, y = Probability, color = Strategy)) +
|
57 |
+
geom_segment(aes(x = x_dodged, xend = x_dodged,
|
58 |
+
y = 0, yend = Probability), size = 0.3) +
|
59 |
+
geom_point(size = 2.5) +
|
60 |
+
geom_text(aes(label = sprintf("%.2f", Probability)),
|
61 |
+
vjust = -0.7, size = 3) +
|
62 |
+
scale_x_continuous(breaks = unique(df$Level_num),
|
63 |
+
labels = unique(df$Level),
|
64 |
+
limits = c(min(df$x_dodged) - 0.20,
|
65 |
+
max(df$x_dodged) + 0.20)) +
|
66 |
+
labs(title = "Optimal Distribution for:",
|
67 |
+
subtitle = sprintf("*%s*",
|
68 |
+
gsub(factor_name, pattern = "\\.", replace = " ")),
|
69 |
+
x = "Level",
|
70 |
+
y = "Probability") +
|
71 |
+
theme_minimal(base_size = 18) +
|
72 |
+
theme(legend.position = "none",
|
73 |
+
legend.title = element_blank(),
|
74 |
+
panel.grid.major = element_blank(),
|
75 |
+
panel.grid.minor = element_blank(),
|
76 |
+
axis.line = element_line(color = "black", size = 0.5),
|
77 |
+
axis.text.x = element_text(angle = 45, hjust = 1,
|
78 |
+
margin = margin(r = 10))) +
|
79 |
+
scale_color_manual(values = c(Democrat = "#89cff0",
|
80 |
+
Republican = "red",
|
81 |
+
Optimal = "black"))
|
82 |
+
}
|
83 |
+
|
84 |
+
# =============================================================================
|
85 |
+
# UI (identical to previous async version—only shinyjs::useShinyjs() added)
|
86 |
+
# =============================================================================
|
87 |
+
ui <- fluidPage(
|
88 |
+
useShinyjs(),
|
89 |
+
|
90 |
+
titlePanel("Exploring strategize with the candidate choice conjoint data"),
|
91 |
+
|
92 |
+
tags$p(
|
93 |
+
style = "text-align: left; margin-top: -10px;",
|
94 |
+
tags$a(href = "https://strategizelab.org/",
|
95 |
+
target = "_blank",
|
96 |
+
title = "strategizelab.org",
|
97 |
+
style = "color: #337ab7; text-decoration: none;",
|
98 |
+
"strategizelab.org ",
|
99 |
+
icon("external-link", style = "font-size: 12px;"))
|
100 |
+
),
|
101 |
+
|
102 |
+
# ---- Share button (unchanged) --------------------------------------------
|
103 |
+
tags$div(
|
104 |
+
style = "text-align: left; margin: 0.5em 0 0.5em 0em;",
|
105 |
+
HTML('
|
106 |
+
<button id="share-button"
|
107 |
+
style="
|
108 |
+
display: inline-flex;
|
109 |
+
align-items: center;
|
110 |
+
justify-content: center;
|
111 |
+
gap: 8px;
|
112 |
+
padding: 5px 10px;
|
113 |
+
font-size: 16px;
|
114 |
+
font-weight: normal;
|
115 |
+
color: #000;
|
116 |
+
background-color: #fff;
|
117 |
+
border: 1px solid #ddd;
|
118 |
+
border-radius: 6px;
|
119 |
+
cursor: pointer;
|
120 |
+
box-shadow: 0 1.5px 0 #000;
|
121 |
+
">
|
122 |
+
<svg width="18" height="18" viewBox="0 0 24 24" fill="none"
|
123 |
+
stroke="currentColor" stroke-width="2" stroke-linecap="round"
|
124 |
+
stroke-linejoin="round">
|
125 |
+
<circle cx="18" cy="5" r="3"></circle>
|
126 |
+
<circle cx="6" cy="12" r="3"></circle>
|
127 |
+
<circle cx="18" cy="19" r="3"></circle>
|
128 |
+
<line x1="8.59" y1="13.51" x2="15.42" y2="17.49"></line>
|
129 |
+
<line x1="15.41" y1="6.51" x2="8.59" y2="10.49"></line>
|
130 |
+
</svg>
|
131 |
+
<strong>Share</strong>
|
132 |
+
</button>
|
133 |
+
'),
|
134 |
+
tags$script(
|
135 |
+
HTML("
|
136 |
+
(function() {
|
137 |
+
const shareBtn = document.getElementById('share-button');
|
138 |
+
function toast() {
|
139 |
+
const n = document.createElement('div');
|
140 |
+
n.innerText = 'Copied to clipboard';
|
141 |
+
Object.assign(n.style, {
|
142 |
+
position:'fixed',bottom:'20px',right:'20px',
|
143 |
+
background:'rgba(0,0,0,0.8)',color:'#fff',
|
144 |
+
padding:'8px 12px',borderRadius:'4px',zIndex:9999});
|
145 |
+
document.body.appendChild(n); setTimeout(()=>n.remove(),2000);
|
146 |
+
}
|
147 |
+
shareBtn.addEventListener('click', ()=>{
|
148 |
+
const url = window.location.href;
|
149 |
+
if (navigator.share) {
|
150 |
+
navigator.share({title:document.title||'Link',url})
|
151 |
+
.catch(()=>{});
|
152 |
+
} else if (navigator.clipboard) {
|
153 |
+
navigator.clipboard.writeText(url).then(toast);
|
154 |
+
} else {
|
155 |
+
const ta = document.createElement('textarea');
|
156 |
+
ta.value=url; document.body.appendChild(ta); ta.select();
|
157 |
+
try{document.execCommand('copy'); toast();}
|
158 |
+
catch(e){alert('Copy this link:\\n'+url);} ta.remove();
|
159 |
+
}
|
160 |
+
});
|
161 |
+
})();")
|
162 |
+
)
|
163 |
+
),
|
164 |
+
|
165 |
+
sidebarLayout(
|
166 |
+
sidebarPanel(
|
167 |
+
h4("Analysis Options"),
|
168 |
+
radioButtons("case_type", "Case Type:",
|
169 |
+
choices = c("Average", "Adversarial"),
|
170 |
+
selected = "Average"),
|
171 |
+
conditionalPanel(
|
172 |
+
condition = "input.case_type == 'Average'",
|
173 |
+
selectInput("respondent_group", "Respondent Group:",
|
174 |
+
choices = c("All", "Democrat", "Independent", "Republican"),
|
175 |
+
selected = "Democrat")
|
176 |
+
),
|
177 |
+
numericInput("lambda_input", "Lambda (regularization):",
|
178 |
+
value = 0.01, min = 1e-6, max = 10, step = 0.01),
|
179 |
+
actionButton("compute", "Compute Results", class = "btn-primary"),
|
180 |
+
div(id = "status_text",
|
181 |
+
style = "margin-top:6px; font-style:italic; color:#555;"),
|
182 |
+
hr(),
|
183 |
+
h4("Visualization"),
|
184 |
+
selectInput("factor", "Select Factor to Display:", choices = NULL),
|
185 |
+
br(),
|
186 |
+
selectInput("previousResults", "View Previous Results:", choices = NULL),
|
187 |
+
hr(),
|
188 |
+
h5("Instructions:"),
|
189 |
+
p("1. Select a case type and, for Average case, a respondent group."),
|
190 |
+
p("2. Specify the single lambda to be used by strategize."),
|
191 |
+
p("3. Click 'Compute Results' to generate optimal strategies."),
|
192 |
+
p("4. Choose a factor to view its distribution."),
|
193 |
+
p("5. Use 'View Previous Results' to toggle among past computations.")
|
194 |
+
),
|
195 |
+
|
196 |
+
mainPanel(
|
197 |
+
tabsetPanel(
|
198 |
+
tabPanel("Optimal Strategy Plot",
|
199 |
+
plotOutput("strategy_plot", height = "600px")),
|
200 |
+
tabPanel("Q Value",
|
201 |
+
verbatimTextOutput("q_value"),
|
202 |
+
p("Q represents the estimated outcome under the optimal strategy,",
|
203 |
+
"with 95% confidence interval.")),
|
204 |
+
tabPanel("About",
|
205 |
+
h3("About this page"),
|
206 |
+
p("This page app explores the ",
|
207 |
+
a("strategize R package",
|
208 |
+
href = "https://github.com/cjerzak/strategize-software/",
|
209 |
+
target = "_blank"),
|
210 |
+
" using Ono forced conjoint experimental data.",
|
211 |
+
"It computes optimal strategies for Average (optimizing for a respondent",
|
212 |
+
"group) and Adversarial (optimizing for both parties in competition) cases",
|
213 |
+
"on the fly."),
|
214 |
+
p(strong("Average Case:"), "Optimizes candidate characteristics for a",
|
215 |
+
"selected respondent group."),
|
216 |
+
p(strong("Adversarial Case:"), "Finds equilibrium strategies for Democrats",
|
217 |
+
"and Republicans."),
|
218 |
+
p(strong("More information:"),
|
219 |
+
a("strategizelab.org", href = "https://strategizelab.org",
|
220 |
+
target = "_blank"))
|
221 |
+
)
|
222 |
+
),
|
223 |
+
br(),
|
224 |
+
wellPanel(
|
225 |
+
h4("Currently Selected Computation:"),
|
226 |
+
verbatimTextOutput("selection_summary")
|
227 |
+
)
|
228 |
+
)
|
229 |
+
)
|
230 |
+
)
|
231 |
+
|
232 |
+
# =============================================================================
|
233 |
+
# SERVER
|
234 |
+
# =============================================================================
|
235 |
+
server <- function(input, output, session) {
|
236 |
+
|
237 |
+
# ---- Data load (unchanged) -----------------------------------------------
|
238 |
+
load("Processed_OnoData.RData")
|
239 |
+
Primary2016 <- read.csv("PrimaryCandidates2016 - Sheet1.csv")
|
240 |
+
|
241 |
+
# ---- Reactive stores ------------------------------------------------------
|
242 |
+
cachedResults <- reactiveValues(data = list())
|
243 |
+
runningFlags <- reactiveValues(active = list())
|
244 |
+
|
245 |
+
# ---- Factor dropdown updater ---------------------------------------------
|
246 |
+
observe({
|
247 |
+
req(input$case_type)
|
248 |
+
if (input$case_type == "Average") {
|
249 |
+
factors <- setdiff(colnames(FACTOR_MAT_FULL), "Office")
|
250 |
+
} else {
|
251 |
+
factors <- setdiff(colnames(FACTOR_MAT_FULL),
|
252 |
+
c("Office", "Party.affiliation", "Party.competition"))
|
253 |
+
}
|
254 |
+
updateSelectInput(session, "factor",
|
255 |
+
choices = factors,
|
256 |
+
selected = factors[1])
|
257 |
+
})
|
258 |
+
|
259 |
+
# ===========================================================================
|
260 |
+
# Compute Results button
|
261 |
+
# ===========================================================================
|
262 |
+
observeEvent(input$compute, {
|
263 |
+
|
264 |
+
## ---- CAPTURE reactive inputs ------------------------------------------
|
265 |
+
case_type <- isolate(input$case_type)
|
266 |
+
respondent_group <- isolate(input$respondent_group)
|
267 |
+
my_lambda <- isolate(input$lambda_input)
|
268 |
+
|
269 |
+
label <- if (case_type == "Average") {
|
270 |
+
paste0("Case=Average, Group=", respondent_group,
|
271 |
+
", Lambda=", my_lambda)
|
272 |
+
} else {
|
273 |
+
paste0("Case=Adversarial, Lambda=", my_lambda)
|
274 |
+
}
|
275 |
+
|
276 |
+
runningFlags$active[[label]] <- TRUE
|
277 |
+
cachedResults$data[[label]] <- NULL
|
278 |
+
updateSelectInput(session, "previousResults",
|
279 |
+
choices = names(cachedResults$data),
|
280 |
+
selected = label)
|
281 |
+
shinyjs::html("status_text", "")
|
282 |
+
shinyjs::html("status_text", "submitting…") # Immediately show “submitting…”
|
283 |
+
shinyjs::delay(2000, shinyjs::html("status_text", "submitted")) # Two‑second later switch to “submitted”
|
284 |
+
shinyjs::disable("compute")
|
285 |
+
showNotification(sprintf("Job '%s' submitted …", label),
|
286 |
+
type = "message", duration = 3)
|
287 |
+
|
288 |
+
## ---- FUTURE -----------------------------------------------------------
|
289 |
+
future({
|
290 |
+
|
291 |
+
strategize_start <- Sys.time()
|
292 |
+
|
293 |
+
# --------------- shared hyper‑params ----------------------------------
|
294 |
+
params <- list(
|
295 |
+
nSGD = 1000L,
|
296 |
+
batch_size = 50L,
|
297 |
+
penalty_type = "KL",
|
298 |
+
nFolds = 3L,
|
299 |
+
use_optax = TRUE,
|
300 |
+
compute_se = FALSE,
|
301 |
+
conf_level = 0.95,
|
302 |
+
conda_env = "strategize",
|
303 |
+
conda_env_required = TRUE
|
304 |
+
)
|
305 |
+
|
306 |
+
if (case_type == "Average") {
|
307 |
+
# ---------- Average case --------------------------------------------
|
308 |
+
indices <- if (respondent_group == "All") {
|
309 |
+
which(my_data$Office == "President")
|
310 |
+
} else {
|
311 |
+
which(my_data_FULL$R_Partisanship == respondent_group &
|
312 |
+
my_data$Office == "President")
|
313 |
+
}
|
314 |
+
|
315 |
+
FACTOR_MAT <- FACTOR_MAT_FULL[indices,
|
316 |
+
!colnames(FACTOR_MAT_FULL) %in%
|
317 |
+
c("Office", "Party.affiliation", "Party.competition")]
|
318 |
+
Yobs <- Yobs_FULL[indices]
|
319 |
+
X <- X_FULL[indices, ]
|
320 |
+
pair_id <- pair_id_FULL[indices]
|
321 |
+
assignmentProbList <- assignmentProbList_FULL[colnames(FACTOR_MAT)]
|
322 |
+
|
323 |
+
Qoptimized <- strategize(
|
324 |
+
Y = Yobs,
|
325 |
+
W = FACTOR_MAT,
|
326 |
+
X = X,
|
327 |
+
pair_id = pair_id,
|
328 |
+
p_list = assignmentProbList[colnames(FACTOR_MAT)],
|
329 |
+
lambda = my_lambda,
|
330 |
+
diff = TRUE,
|
331 |
+
adversarial = FALSE,
|
332 |
+
use_regularization = TRUE,
|
333 |
+
K = 1L,
|
334 |
+
nSGD = params$nSGD,
|
335 |
+
penalty_type = params$penalty_type,
|
336 |
+
folds = params$nFolds,
|
337 |
+
use_optax = params$use_optax,
|
338 |
+
compute_se = params$compute_se,
|
339 |
+
conf_level = params$conf_level,
|
340 |
+
conda_env = params$conda_env,
|
341 |
+
conda_env_required = params$conda_env_required
|
342 |
+
)
|
343 |
+
Qoptimized$n_strategies <- 1L
|
344 |
+
|
345 |
+
} else {
|
346 |
+
# ---------- Adversarial case ----------------------------------------
|
347 |
+
DROP <- c("Office", "Party.affiliation", "Party.competition")
|
348 |
+
FACTOR_MAT <- FACTOR_MAT_FULL[, !colnames(FACTOR_MAT_FULL) %in% DROP]
|
349 |
+
assignmentProbList <- assignmentProbList_FULL[!names(assignmentProbList_FULL) %in% DROP]
|
350 |
+
|
351 |
+
# Build Primary slates
|
352 |
+
FactorOptions <- apply(FACTOR_MAT, 2, table)
|
353 |
+
prior_alpha <- 10
|
354 |
+
Primary_D <- Primary2016[Primary2016$Party == "Democratic",
|
355 |
+
colnames(FACTOR_MAT)]
|
356 |
+
Primary_R <- Primary2016[Primary2016$Party == "Republican",
|
357 |
+
colnames(FACTOR_MAT)]
|
358 |
+
slate_fun <- function(df) {
|
359 |
+
lapply(colnames(df), function(col) {
|
360 |
+
post <- FactorOptions[[col]]; post[] <- prior_alpha
|
361 |
+
emp <- table(df[[col]]); emp <- emp[names(emp) != "Unclear"]
|
362 |
+
post[names(emp)] <- post[names(emp)] + emp
|
363 |
+
prop.table(post)
|
364 |
+
}) |> setNames(colnames(df))
|
365 |
+
}
|
366 |
+
slate_list <- list(Democratic = slate_fun(Primary_D),
|
367 |
+
Republican = slate_fun(Primary_R))
|
368 |
+
|
369 |
+
indices <- which(my_data$R_Partisanship %in% c("Republican", "Democrat") &
|
370 |
+
my_data$Office == "President")
|
371 |
+
FACTOR_MAT <- FACTOR_MAT_FULL[indices,
|
372 |
+
!colnames(FACTOR_MAT_FULL) %in%
|
373 |
+
c("Office", "Party.competition", "Party.affiliation")]
|
374 |
+
Yobs <- Yobs_FULL[indices]
|
375 |
+
my_data_red <- my_data_FULL[indices, ]
|
376 |
+
pair_id <- pair_id_FULL[indices]
|
377 |
+
cluster_var <- cluster_var_FULL[indices]
|
378 |
+
my_data_red$Party.affiliation_clean <-
|
379 |
+
ifelse(my_data_red$Party.affiliation == "Republican Party", "Republican",
|
380 |
+
ifelse(my_data_red$Party.affiliation == "Democratic Party","Democrat","Independent"))
|
381 |
+
|
382 |
+
assignmentProbList <- assignmentProbList_FULL[colnames(FACTOR_MAT)]
|
383 |
+
slate_list$Democratic <- slate_list$Democratic[names(assignmentProbList)]
|
384 |
+
slate_list$Republican <- slate_list$Republican[names(assignmentProbList)]
|
385 |
+
|
386 |
+
Qoptimized <- strategize(
|
387 |
+
Y = Yobs,
|
388 |
+
W = FACTOR_MAT,
|
389 |
+
X = NULL,
|
390 |
+
p_list = assignmentProbList,
|
391 |
+
slate_list = slate_list,
|
392 |
+
varcov_cluster_variable = cluster_var,
|
393 |
+
competing_group_variable_respondent = my_data_red$R_Partisanship,
|
394 |
+
competing_group_variable_candidate = my_data_red$Party.affiliation_clean,
|
395 |
+
competing_group_competition_variable_candidate =
|
396 |
+
my_data_red$Party.competition,
|
397 |
+
pair_id = pair_id,
|
398 |
+
respondent_id = my_data_red$respondentIndex,
|
399 |
+
respondent_task_id = my_data_red$task,
|
400 |
+
profile_order = my_data_red$profile,
|
401 |
+
lambda = my_lambda,
|
402 |
+
diff = TRUE,
|
403 |
+
use_regularization = TRUE,
|
404 |
+
force_gaussian = FALSE,
|
405 |
+
adversarial = TRUE,
|
406 |
+
K = 1L,
|
407 |
+
nMonte_adversarial = 20L,
|
408 |
+
nSGD = params$nSGD,
|
409 |
+
penalty_type = params$penalty_type,
|
410 |
+
learning_rate_max = 0.001,
|
411 |
+
use_optax = params$use_optax,
|
412 |
+
compute_se = params$compute_se,
|
413 |
+
conf_level = params$conf_level,
|
414 |
+
conda_env = params$conda_env,
|
415 |
+
conda_env_required = params$conda_env_required
|
416 |
+
)
|
417 |
+
Qoptimized$n_strategies <- 2L
|
418 |
+
}
|
419 |
+
|
420 |
+
Qoptimized$runtime_seconds <-
|
421 |
+
as.numeric(difftime(Sys.time(), strategize_start, units = "secs"))
|
422 |
+
Qoptimized[c("pi_star_point", "pi_star_se", "Q_point",
|
423 |
+
"Q_se", "n_strategies", "runtime_seconds")]
|
424 |
+
}) %...>% # success handler
|
425 |
+
(function(res) {
|
426 |
+
cachedResults$data[[label]] <- res
|
427 |
+
runningFlags$active[[label]] <- FALSE
|
428 |
+
updateSelectInput(session, "previousResults",
|
429 |
+
choices = names(cachedResults$data),
|
430 |
+
selected = label)
|
431 |
+
shinyjs::html("status_text", "complete!")
|
432 |
+
shinyjs::enable("compute")
|
433 |
+
showNotification(sprintf("Job '%s' finished (%.1f s).",
|
434 |
+
label, res$runtime_seconds),
|
435 |
+
type = "message", duration = 6)
|
436 |
+
}) %...!% # error handler
|
437 |
+
(function(err) {
|
438 |
+
runningFlags$active[[label]] <- FALSE
|
439 |
+
cachedResults$data[[label]] <- NULL
|
440 |
+
shinyjs::html("status_text", "error – see log")
|
441 |
+
shinyjs::enable("compute")
|
442 |
+
showNotification(paste("Error in", label, ":", err$message),
|
443 |
+
type = "error", duration = 8)
|
444 |
+
})
|
445 |
+
|
446 |
+
NULL # return value of observeEvent
|
447 |
+
})
|
448 |
+
|
449 |
+
# ---- Helper: fetch selected result or show waiting msg -------------------
|
450 |
+
selectedResult <- reactive({
|
451 |
+
lbl <- input$previousResults ; req(lbl)
|
452 |
+
if (isTRUE(runningFlags$active[[lbl]]))
|
453 |
+
validate("Computation is still running – please wait…")
|
454 |
+
res <- cachedResults$data[[lbl]]
|
455 |
+
validate(need(!is.null(res), "No finished result selected."))
|
456 |
+
res
|
457 |
+
})
|
458 |
+
|
459 |
+
# ---- Outputs -------------------------------------------------------------
|
460 |
+
output$strategy_plot <- renderPlot({
|
461 |
+
res <- selectedResult()
|
462 |
+
plot_factor(res$pi_star_point, res$pi_star_se,
|
463 |
+
factor_name = input$factor,
|
464 |
+
n_strategies = res$n_strategies)
|
465 |
+
})
|
466 |
+
|
467 |
+
output$q_value <- renderText({
|
468 |
+
res <- selectedResult()
|
469 |
+
q_pt <- res$Q_point; q_se <- res$Q_se
|
470 |
+
txt <- if (length(q_se) && q_se > 0)
|
471 |
+
sprintf("Estimated Q Value: %.3f ± %.3f", q_pt, 1.96*q_se)
|
472 |
+
else sprintf("Estimated Q Value: %.3f", q_pt)
|
473 |
+
sprintf("%s (Runtime: %.2f s)", txt, res$runtime_seconds)
|
474 |
+
})
|
475 |
+
|
476 |
+
output$selection_summary <- renderText({ input$previousResults })
|
477 |
+
}
|
478 |
+
|
479 |
+
# =============================================================================
|
480 |
+
# Run the app
|
481 |
+
# =============================================================================
|
482 |
+
shinyApp(ui, server)
|