Multiscaler / app.R
cjerzak's picture
Update app.R
f91b361 verified
raw
history blame
8.7 kB
# setwd('~/Dropbox/ImageSeq/')
library(shiny)
library(dplyr)
library(plotly)
library(fields) # For image.plot in heatMap
library(akima) # For interpolation in heatMap
# Load the data from sm.csv
sm <- read.csv("sm.csv")
# Define function to convert to numeric
f2n <- function(x) as.numeric(as.character(x))
# Compute MaxImageDimsLeft and MaxImageDimsRight from MaxImageDims
sm$MaxImageDimsLeft <- unlist(lapply(strsplit(sm$MaxImageDims, split = "_"), function(x) sort(f2n(x))[1]))
sm$MaxImageDimsRight <- unlist(lapply(strsplit(sm$MaxImageDims, split = "_"), function(x) sort(f2n(x))[2]))
# Define the heatMap function (unchanged except for updated default color palette)
heatMap <- function(x, y, z,
main = "",
N, yaxt = NULL,
xlab = "",
ylab = "",
horizontal = FALSE,
useLog = "",
legend.width = 1,
ylim = NULL,
xlim = NULL,
zlim = NULL,
add.legend = TRUE,
legend.only = FALSE,
vline = NULL,
col_vline = "black",
hline = NULL,
col_hline = "black",
cex.lab = 2,
cex.main = 2,
myCol = NULL,
includeMarginals = FALSE,
marginalJitterSD_x = 0.01,
marginalJitterSD_y = 0.01,
openBrowser = FALSE) {
if (openBrowser) { browser() }
s_ <- akima::interp(x = x, y = y, z = z,
xo = seq(min(x), max(x), length = N),
yo = seq(min(y), max(y), length = N),
duplicate = "mean")
if (is.null(xlim)) { xlim = range(s_$x, finite = TRUE) }
if (is.null(ylim)) { ylim = range(s_$y, finite = TRUE) }
imageFxn <- if (add.legend) fields::image.plot else graphics::image
if (!grepl(useLog, pattern = "z")) {
imageFxn(s_, xlab = xlab, ylab = ylab, log = useLog, cex.lab = cex.lab, main = main,
cex.main = cex.main, col = myCol, xlim = xlim, ylim = ylim,
legend.width = legend.width, horizontal = horizontal, yaxt = yaxt,
zlim = zlim, legend.only = legend.only)
} else {
useLog <- gsub(useLog, pattern = "z", replace = "")
zTicks <- summary(c(s_$z))
ep_ <- 0.001
zTicks[zTicks < ep_] <- ep_
zTicks <- exp(seq(log(min(zTicks)), log(max(zTicks)), length.out = 10))
zTicks <- round(zTicks, abs(min(log(zTicks, base = 10))))
s_$z[s_$z < ep_] <- ep_
imageFxn(s_$x, s_$y, log(s_$z), yaxt = yaxt,
axis.args = list(at = log(zTicks), labels = zTicks),
main = main, cex.main = cex.main, xlab = xlab, ylab = ylab,
log = useLog, cex.lab = cex.lab, xlim = xlim, ylim = ylim,
horizontal = horizontal, col = myCol, legend.width = legend.width,
zlim = zlim, legend.only = legend.only)
}
if (!is.null(vline)) { abline(v = vline, lwd = 10, col = col_vline) }
if (!is.null(hline)) { abline(h = hline, lwd = 10, col = col_hline) }
if (includeMarginals) {
points(x + rnorm(length(y), sd = marginalJitterSD_x * sd(x)),
rep(ylim[1] * 1.1, length(y)), pch = "|", col = "darkgray")
points(rep(xlim[1] * 1.1, length(x)),
y + rnorm(length(y), sd = sd(y) * marginalJitterSD_y), pch = "-", col = "darkgray")
}
}
# UI Definition
ui <- fluidPage(
titlePanel("Multiscale Heatmap & Surface Explorer"),
sidebarLayout(
sidebarPanel(
selectInput("application", "Application",
choices = unique(sm$application),
selected = unique(sm$application)[1]),
selectInput("model", "Model",
choices = unique(sm$optimizeImageRep),
selected = "clip"),
# Removed "Perturb Center" input
selectInput("metric", "Metric",
choices = c("AUTOC_rate_std_ratio_mean", "AUTOC_rate_mean", "AUTOC_rate_std_mean",
"AUTOC_rate_std_ratio_mean_pc", "AUTOC_rate_mean_pc", "AUTOC_rate_std_mean_pc",
"MeanVImportHalf1", "MeanVImportHalf2", "FracTopkHalf1", "RMSE"),
selected = "AUTOC_rate_std_ratio_mean"),
radioButtons("plotType", "Plot Type",
choices = c("Heatmap", "Surface"),
selected = "Heatmap")
),
mainPanel(
uiOutput("plotOutput")
)
)
)
# Server Definition
server <- function(input, output) {
# Reactive data processing
filteredData <- reactive({
# Removed filtering by 'perturbCenter'
df <- sm %>%
filter(application == input$application,
optimizeImageRep == input$model) %>%
mutate(MaxImageDimsRight = ifelse(is.na(MaxImageDimsRight),
MaxImageDimsLeft,
MaxImageDimsRight))
if (nrow(df) == 0) return(NULL)
df
})
# Render the plot output dynamically
output$plotOutput <- renderUI({
data <- filteredData()
if (is.null(data)) {
return(tags$p("No data available for the selected filters."))
}
if (input$plotType == "Heatmap") {
plotOutput("heatmapPlot", height = "600px")
} else {
plotlyOutput("surfacePlot", height = "600px")
}
})
# Heatmap Output
output$heatmapPlot <- renderPlot({
data <- filteredData()
if (is.null(data)) return(NULL)
# Group data for heatmap
grouped_data <- data %>%
group_by(MaxImageDimsLeft, MaxImageDimsRight) %>%
summarise(
mean_metric = mean(as.numeric(get(input$metric)), na.rm = TRUE),
se_metric = sd(as.numeric(get(input$metric)), na.rm = TRUE) / sqrt(n()),
n = n(),
.groups = "drop"
)
# Check for sufficient data points for interpolation
if (nrow(grouped_data) < 3) {
plot.new()
text(0.5, 0.5, "Insufficient data points for interpolation", cex = 1.5)
} else {
x <- grouped_data$MaxImageDimsLeft
y <- grouped_data$MaxImageDimsRight
z <- grouped_data$mean_metric
# Slightly more appealing color palette
customPalette <- colorRampPalette(c("blue", "white", "red"))(50)
heatMap(x = x,
y = y,
z = z,
N = 50,
main = paste(input$application, "-", input$metric),
# More descriptive axis labels
xlab = "Maximum Image Dimensions (Left)",
ylab = "Maximum Image Dimensions (Right)",
useLog = "xy",
myCol = customPalette,
cex.lab = 1.4)
}
})
# Surface Plot Output
output$surfacePlot <- renderPlotly({
data <- filteredData()
if (is.null(data)) return(NULL)
# Group data for surface plot
grouped_data <- data %>%
group_by(MaxImageDimsLeft, MaxImageDimsRight) %>%
summarise(
mean_metric = mean(as.numeric(get(input$metric)), na.rm = TRUE),
se_metric = sd(as.numeric(get(input$metric)), na.rm = TRUE) / sqrt(n()),
n = n(),
.groups = "drop"
)
# Create grid for surface plot
all_scales <- sort(unique(c(grouped_data$MaxImageDimsLeft, grouped_data$MaxImageDimsRight)))
z_matrix <- matrix(NA, nrow = length(all_scales), ncol = length(all_scales))
tooltip_matrix <- matrix("", nrow = length(all_scales), ncol = length(all_scales))
for (i in 1:nrow(grouped_data)) {
left_idx <- which(all_scales == grouped_data$MaxImageDimsLeft[i])
right_idx <- which(all_scales == grouped_data$MaxImageDimsRight[i])
z_matrix[left_idx, right_idx] <- grouped_data$mean_metric[i]
tooltip_matrix[left_idx, right_idx] <- sprintf("Mean: %.2f<br>SE: %.2f<br>n: %d",
grouped_data$mean_metric[i],
grouped_data$se_metric[i],
grouped_data$n[i])
}
# Render interactive 3D surface plot
plot_ly(
x = all_scales,
y = all_scales,
z = z_matrix,
type = "surface",
text = tooltip_matrix,
hoverinfo = "text"
) %>%
layout(
title = paste("Surface Plot for", input$metric, "in", input$application),
scene = list(
xaxis = list(title = "Maximum Image Dimensions (Right)"),
yaxis = list(title = "Maximum Image Dimensions (Left)"),
zaxis = list(title = input$metric)
)
)
})
}
# Run the Shiny App
shinyApp(ui = ui, server = server)