File size: 8,702 Bytes
f91b361
 
142c273
 
f91b361
 
 
142c273
f91b361
 
142c273
f91b361
 
142c273
f91b361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142c273
f91b361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142c273
f91b361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142c273
 
f91b361
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# setwd('~/Dropbox/ImageSeq/')

library(shiny)
library(dplyr)
library(plotly)
library(fields)  # For image.plot in heatMap
library(akima)   # For interpolation in heatMap

# Load the data from sm.csv
sm <- read.csv("sm.csv")

# Define function to convert to numeric
f2n <- function(x) as.numeric(as.character(x))

# Compute MaxImageDimsLeft and MaxImageDimsRight from MaxImageDims
sm$MaxImageDimsLeft <- unlist(lapply(strsplit(sm$MaxImageDims, split = "_"), function(x) sort(f2n(x))[1]))
sm$MaxImageDimsRight <- unlist(lapply(strsplit(sm$MaxImageDims, split = "_"), function(x) sort(f2n(x))[2]))

# Define the heatMap function (unchanged except for updated default color palette)
heatMap <- function(x, y, z,
                    main = "",
                    N, yaxt = NULL,
                    xlab = "",
                    ylab = "",
                    horizontal = FALSE,
                    useLog = "",
                    legend.width = 1,
                    ylim = NULL,
                    xlim = NULL,
                    zlim = NULL,
                    add.legend = TRUE,
                    legend.only = FALSE,
                    vline = NULL,
                    col_vline = "black",
                    hline = NULL,
                    col_hline = "black",
                    cex.lab = 2,
                    cex.main = 2,
                    myCol = NULL,
                    includeMarginals = FALSE,
                    marginalJitterSD_x = 0.01,
                    marginalJitterSD_y = 0.01,
                    openBrowser = FALSE) {
  if (openBrowser) { browser() }
  s_ <- akima::interp(x = x, y = y, z = z,
                      xo = seq(min(x), max(x), length = N),
                      yo = seq(min(y), max(y), length = N),
                      duplicate = "mean")
  if (is.null(xlim)) { xlim = range(s_$x, finite = TRUE) }
  if (is.null(ylim)) { ylim = range(s_$y, finite = TRUE) }
  imageFxn <- if (add.legend) fields::image.plot else graphics::image
  if (!grepl(useLog, pattern = "z")) {
    imageFxn(s_, xlab = xlab, ylab = ylab, log = useLog, cex.lab = cex.lab, main = main,
             cex.main = cex.main, col = myCol, xlim = xlim, ylim = ylim,
             legend.width = legend.width, horizontal = horizontal, yaxt = yaxt,
             zlim = zlim, legend.only = legend.only)
  } else {
    useLog <- gsub(useLog, pattern = "z", replace = "")
    zTicks <- summary(c(s_$z))
    ep_ <- 0.001
    zTicks[zTicks < ep_] <- ep_
    zTicks <- exp(seq(log(min(zTicks)), log(max(zTicks)), length.out = 10))
    zTicks <- round(zTicks, abs(min(log(zTicks, base = 10))))
    s_$z[s_$z < ep_] <- ep_
    imageFxn(s_$x, s_$y, log(s_$z), yaxt = yaxt,
             axis.args = list(at = log(zTicks), labels = zTicks),
             main = main, cex.main = cex.main, xlab = xlab, ylab = ylab,
             log = useLog, cex.lab = cex.lab, xlim = xlim, ylim = ylim,
             horizontal = horizontal, col = myCol, legend.width = legend.width,
             zlim = zlim, legend.only = legend.only)
  }
  if (!is.null(vline)) { abline(v = vline, lwd = 10, col = col_vline) }
  if (!is.null(hline)) { abline(h = hline, lwd = 10, col = col_hline) }
  
  if (includeMarginals) {
    points(x + rnorm(length(y), sd = marginalJitterSD_x * sd(x)),
           rep(ylim[1] * 1.1, length(y)), pch = "|", col = "darkgray")
    points(rep(xlim[1] * 1.1, length(x)),
           y + rnorm(length(y), sd = sd(y) * marginalJitterSD_y), pch = "-", col = "darkgray")
  }
}

# UI Definition
ui <- fluidPage(
  titlePanel("Multiscale Heatmap & Surface Explorer"),
  sidebarLayout(
    sidebarPanel(
      selectInput("application", "Application",
                  choices = unique(sm$application),
                  selected = unique(sm$application)[1]),
      selectInput("model", "Model",
                  choices = unique(sm$optimizeImageRep),
                  selected = "clip"),
      # Removed "Perturb Center" input
      selectInput("metric", "Metric",
                  choices = c("AUTOC_rate_std_ratio_mean", "AUTOC_rate_mean", "AUTOC_rate_std_mean",
                              "AUTOC_rate_std_ratio_mean_pc", "AUTOC_rate_mean_pc", "AUTOC_rate_std_mean_pc",
                              "MeanVImportHalf1", "MeanVImportHalf2", "FracTopkHalf1", "RMSE"),
                  selected = "AUTOC_rate_std_ratio_mean"),
      radioButtons("plotType", "Plot Type",
                   choices = c("Heatmap", "Surface"),
                   selected = "Heatmap")
    ),
    mainPanel(
      uiOutput("plotOutput")
    )
  )
)

# Server Definition
server <- function(input, output) {
  # Reactive data processing
  filteredData <- reactive({
    # Removed filtering by 'perturbCenter'
    df <- sm %>%
      filter(application == input$application,
             optimizeImageRep == input$model) %>%
      mutate(MaxImageDimsRight = ifelse(is.na(MaxImageDimsRight),
                                        MaxImageDimsLeft,
                                        MaxImageDimsRight))
    if (nrow(df) == 0) return(NULL)
    df
  })
  
  # Render the plot output dynamically
  output$plotOutput <- renderUI({
    data <- filteredData()
    if (is.null(data)) {
      return(tags$p("No data available for the selected filters."))
    }
    
    if (input$plotType == "Heatmap") {
      plotOutput("heatmapPlot", height = "600px")
    } else {
      plotlyOutput("surfacePlot", height = "600px")
    }
  })
  
  # Heatmap Output
  output$heatmapPlot <- renderPlot({
    data <- filteredData()
    if (is.null(data)) return(NULL)
    
    # Group data for heatmap
    grouped_data <- data %>%
      group_by(MaxImageDimsLeft, MaxImageDimsRight) %>%
      summarise(
        mean_metric = mean(as.numeric(get(input$metric)), na.rm = TRUE),
        se_metric = sd(as.numeric(get(input$metric)), na.rm = TRUE) / sqrt(n()),
        n = n(),
        .groups = "drop"
      )
    
    # Check for sufficient data points for interpolation
    if (nrow(grouped_data) < 3) {
      plot.new()
      text(0.5, 0.5, "Insufficient data points for interpolation", cex = 1.5)
    } else {
      x <- grouped_data$MaxImageDimsLeft
      y <- grouped_data$MaxImageDimsRight
      z <- grouped_data$mean_metric
      
      # Slightly more appealing color palette
      customPalette <- colorRampPalette(c("blue", "white", "red"))(50)
      
      heatMap(x = x,
              y = y,
              z = z,
              N = 50,
              main = paste(input$application, "-", input$metric),
              # More descriptive axis labels
              xlab = "Maximum Image Dimensions (Left)",
              ylab = "Maximum Image Dimensions (Right)",
              useLog = "xy",
              myCol = customPalette,
              cex.lab = 1.4)
    }
  })
  
  # Surface Plot Output
  output$surfacePlot <- renderPlotly({
    data <- filteredData()
    if (is.null(data)) return(NULL)
    
    # Group data for surface plot
    grouped_data <- data %>%
      group_by(MaxImageDimsLeft, MaxImageDimsRight) %>%
      summarise(
        mean_metric = mean(as.numeric(get(input$metric)), na.rm = TRUE),
        se_metric = sd(as.numeric(get(input$metric)), na.rm = TRUE) / sqrt(n()),
        n = n(),
        .groups = "drop"
      )
    
    # Create grid for surface plot
    all_scales <- sort(unique(c(grouped_data$MaxImageDimsLeft, grouped_data$MaxImageDimsRight)))
    z_matrix <- matrix(NA, nrow = length(all_scales), ncol = length(all_scales))
    tooltip_matrix <- matrix("", nrow = length(all_scales), ncol = length(all_scales))
    
    for (i in 1:nrow(grouped_data)) {
      left_idx <- which(all_scales == grouped_data$MaxImageDimsLeft[i])
      right_idx <- which(all_scales == grouped_data$MaxImageDimsRight[i])
      z_matrix[left_idx, right_idx] <- grouped_data$mean_metric[i]
      tooltip_matrix[left_idx, right_idx] <- sprintf("Mean: %.2f<br>SE: %.2f<br>n: %d",
                                                     grouped_data$mean_metric[i],
                                                     grouped_data$se_metric[i],
                                                     grouped_data$n[i])
    }
    
    # Render interactive 3D surface plot
    plot_ly(
      x = all_scales,
      y = all_scales,
      z = z_matrix,
      type = "surface",
      text = tooltip_matrix,
      hoverinfo = "text"
    ) %>%
      layout(
        title = paste("Surface Plot for", input$metric, "in", input$application),
        scene = list(
          xaxis = list(title = "Maximum Image Dimensions (Right)"),
          yaxis = list(title = "Maximum Image Dimensions (Left)"),
          zaxis = list(title = input$metric)
        )
      )
  })
}

# Run the Shiny App
shinyApp(ui = ui, server = server)