Spaces:
Running
Running
File size: 13,398 Bytes
f91b361 0d2a648 142c273 f91b361 a22e188 142c273 f91b361 142c273 f91b361 142c273 f91b361 a22e188 f91b361 a22e188 f91b361 a22e188 f91b361 142c273 f91b361 a22e188 f91b361 a22e188 f91b361 0d2a648 f91b361 142c273 f91b361 a22e188 f91b361 a22e188 f91b361 a22e188 f91b361 a22e188 f91b361 a22e188 f91b361 a22e188 f91b361 a22e188 f91b361 a22e188 f91b361 a22e188 f91b361 a22e188 0d2a648 a22e188 0d2a648 f91b361 a22e188 0d2a648 a22e188 f91b361 0d2a648 142c273 f91b361 a22e188 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
# setwd('~/Dropbox/ImageSeq/')
options(error = NULL)
library(shiny)
library(dplyr)
library(fields) # For image.plot in heatMap
library(akima) # For interpolation
# Load the data from sm.csv
sm <- read.csv("sm.csv")
# Define function to convert to numeric
f2n <- function(x) as.numeric(as.character(x))
# Compute MaxImageDimsLeft and MaxImageDimsRight from MaxImageDims
sm$MaxImageDimsLeft <- unlist(lapply(strsplit(sm$MaxImageDims, split = "_"), function(x) sort(f2n(x))[1]))
sm$MaxImageDimsRight <- unlist(lapply(strsplit(sm$MaxImageDims, split = "_"), function(x) sort(f2n(x))[2]))
# Heatmap function with optimal_point parameter
heatMap <- function(x, y, z,
main = "",
N, yaxt = NULL,
xlab = "",
ylab = "",
horizontal = FALSE,
useLog = "",
legend.width = 1,
ylim = NULL,
xlim = NULL,
zlim = NULL,
add.legend = TRUE,
legend.only = FALSE,
vline = NULL,
col_vline = "black",
hline = NULL,
col_hline = "black",
cex.lab = 2,
cex.main = 2,
myCol = NULL,
includeMarginals = FALSE,
marginalJitterSD_x = 0.01,
marginalJitterSD_y = 0.01,
openBrowser = FALSE,
optimal_point = NULL) {
if (openBrowser) { browser() }
s_ <- akima::interp(x = x, y = y, z = z,
xo = seq(min(x), max(x), length = N),
yo = seq(min(y), max(y), length = N),
duplicate = "mean")
if (is.null(xlim)) { xlim = range(s_$x, finite = TRUE) }
if (is.null(ylim)) { ylim = range(s_$y, finite = TRUE) }
imageFxn <- if (add.legend) fields::image.plot else graphics::image
if (!grepl(useLog, pattern = "z")) {
imageFxn(s_, xlab = xlab, ylab = ylab, log = useLog, cex.lab = cex.lab, main = main,
cex.main = cex.main, col = myCol, xlim = xlim, ylim = ylim,
legend.width = legend.width, horizontal = horizontal, yaxt = yaxt,
zlim = zlim, legend.only = legend.only)
} else {
useLog <- gsub(useLog, pattern = "z", replace = "")
zTicks <- summary(c(s_$z))
ep_ <- 0.001
zTicks[zTicks < ep_] <- ep_
zTicks <- exp(seq(log(min(zTicks)), log(max(zTicks)), length.out = 10))
zTicks <- round(zTicks, abs(min(log(zTicks, base = 10))))
s_$z[s_$z < ep_] <- ep_
imageFxn(s_$x, s_$y, log(s_$z), yaxt = yaxt,
axis.args = list(at = log(zTicks), labels = zTicks),
main = main, cex.main = cex.main, xlab = xlab, ylab = ylab,
log = useLog, cex.lab = cex.lab, xlim = xlim, ylim = ylim,
horizontal = horizontal, col = myCol, legend.width = legend.width,
zlim = zlim, legend.only = legend.only)
}
if (!is.null(vline)) { abline(v = vline, lwd = 10, col = col_vline) }
if (!is.null(hline)) { abline(h = hline, lwd = 10, col = col_hline) }
if (includeMarginals) {
points(x + rnorm(length(y), sd = marginalJitterSD_x * sd(x)),
rep(ylim[1] * 1.1, length(y)), pch = "|", col = "darkgray")
points(rep(xlim[1] * 1.1, length(x)),
y + rnorm(length(y), sd = sd(y) * marginalJitterSD_y), pch = "-", col = "darkgray")
}
# Add green star at optimal point if provided
if (!is.null(optimal_point)) {
points(optimal_point$x, optimal_point$y, pch = 8, col = "green", cex = 3, lwd = 4)
}
}
# UI Definition
ui <- fluidPage(
titlePanel("Multiscale Heatmap Explorer"),
sidebarLayout(
sidebarPanel(
selectInput("application", "Application",
choices = unique(sm$application),
selected = unique(sm$application)[1]),
selectInput("model", "Model",
choices = unique(sm$optimizeImageRep),
selected = "clip"),
selectInput("metric", "Metric",
choices = c("AUTOC_rate_std_ratio_mean", "AUTOC_rate_mean", "AUTOC_rate_std_mean",
"AUTOC_rate_std_ratio_mean_pc", "AUTOC_rate_mean_pc", "AUTOC_rate_std_mean_pc",
"MeanVImportHalf1", "MeanVImportHalf2", "FracTopkHalf1", "RMSE"),
selected = "AUTOC_rate_std_ratio_mean"),
checkboxInput("compareToBest", "Compare to best single scale", value = FALSE)
),
mainPanel(
plotOutput("heatmapPlot", height = "600px"),
div(style = "margin-top: 10px; font-style: italic;", uiOutput("contextNote"))
)
)
)
# Server Definition
server <- function(input, output) {
# Function to determine whether to maximize or minimize the metric
get_better_direction <- function(metric) {
#if (grepl("std|RMSE", metric)) "min" else "max"
if (grepl(metric, pattern = "std_mean|RMSE")) "min" else "max"
}
# Reactive data processing
filteredData <- reactive({
df <- sm %>%
filter(application == input$application,
optimizeImageRep == input$model) %>%
mutate(MaxImageDimsRight = ifelse(is.na(MaxImageDimsRight),
MaxImageDimsLeft,
MaxImageDimsRight))
if (nrow(df) == 0) return(NULL)
df
})
# Reactive expression to compute interpolated data and optimal point
interpolated_data <- reactive({
data <- filteredData()
if (is.null(data)) return(NULL)
# Group data
grouped_data <- data %>%
group_by(MaxImageDimsLeft, MaxImageDimsRight) %>%
summarise(
mean_metric = mean(as.numeric(get(input$metric)), na.rm = TRUE),
se_metric = sd(as.numeric(get(input$metric)), na.rm = TRUE) / sqrt(n()),
n = n(),
.groups = "drop"
)
better_dir <- get_better_direction(input$metric)
single_scale_data <- grouped_data %>% filter(MaxImageDimsLeft == MaxImageDimsRight)
best_single_scale_metric <- if (nrow(single_scale_data) > 0) {
if (better_dir == "max") max(single_scale_data$mean_metric, na.rm = TRUE)
else min(single_scale_data$mean_metric, na.rm = TRUE)
} else NA
grouped_data <- grouped_data %>%
mutate(improvement = if (better_dir == "max") {
mean_metric - best_single_scale_metric
} else {
best_single_scale_metric - mean_metric
})
# Select z based on checkbox
z_to_interpolate <- if (input$compareToBest) grouped_data$improvement else grouped_data$mean_metric
x <- grouped_data$MaxImageDimsLeft
y <- grouped_data$MaxImageDimsRight
# Check if interpolation is possible
if (length(unique(x)) < 2 || length(unique(y)) < 2 || nrow(grouped_data) < 3) {
return(NULL)
}
# Compute interpolated grid
s_ <- akima::interp(x = x,
y = y,
z = z_to_interpolate,
xo = seq(min(x), max(x), length = 50),
yo = seq(min(y), max(y), length = 50),
duplicate = "mean")
# Find optimal point from interpolated grid
max_idx <- if (input$compareToBest || better_dir == "max") {
which.max(s_$z)
} else {
which.min(s_$z)
}
row_col <- arrayInd(max_idx, .dim = dim(s_$z))
optimal_x <- s_$x[row_col[1,1]]
optimal_y <- s_$y[row_col[1,2]]
optimal_z <- s_$z[row_col[1,1], row_col[1,2]]
list(s_ = s_,
optimal_point = list(x = optimal_x,
y = optimal_y,
z = optimal_z))
})
# Heatmap Output
output$heatmapPlot <- renderPlot({
interp_data <- interpolated_data()
if (is.null(interp_data)) {
plot.new()
text(0.5, 0.5, "Insufficient data for interpolation", cex = 1.5)
return(NULL)
}
data <- filteredData()
grouped_data <- data %>%
group_by(MaxImageDimsLeft, MaxImageDimsRight) %>%
summarise(
mean_metric = mean(as.numeric(get(input$metric)), na.rm = TRUE),
.groups = "drop"
)
better_dir <- get_better_direction(input$metric)
single_scale_data <- grouped_data %>% filter(MaxImageDimsLeft == MaxImageDimsRight)
best_single_scale_metric <- if (nrow(single_scale_data) > 0) {
if (better_dir == "max") max(single_scale_data$mean_metric, na.rm = TRUE)
else min(single_scale_data$mean_metric, na.rm = TRUE)
} else NA
grouped_data <- grouped_data %>%
mutate(improvement = if (better_dir == "max") {
mean_metric - best_single_scale_metric
} else {
best_single_scale_metric - mean_metric
})
x <- grouped_data$MaxImageDimsLeft
y <- grouped_data$MaxImageDimsRight
if (input$compareToBest) {
z <- grouped_data$improvement
main <- paste(input$application, "-", input$metric, "improvement over best single scale")
#max_abs <- max(abs(z), na.rm = TRUE)
#zlim <- if (!is.na(max_abs)) c(-max_abs, max_abs) else NULL
zlim <- range(z, na.rm = TRUE)
} else {
z <- grouped_data$mean_metric
main <- paste(input$application, "-", input$metric)
zlim <- range(z, na.rm = TRUE)
}
customPalette <- colorRampPalette(c("blue", "white", "red"))(50)
heatMap(x = x,
y = y,
z = z,
N = 50,
main = main,
xlab = "Image Dimension 1",
ylab = "Image Dimension 2",
useLog = "xy",
myCol = customPalette,
cex.lab = 1.4,
zlim = zlim,
optimal_point = interp_data$optimal_point)
})
# Contextual Note Output
output$contextNote <- renderText({
if (input$compareToBest) {
paste("This heatmap shows the improvement in", input$metric,
"over the best single scale for", input$application,
"using the", input$model, "model. The green star marks the optimal point.",
"The Peru RCT involves a multifaceted graduation program treatment to reduce poverty outcomes.",
"The Uganda RCT involves a cash grant program to stimulate human capital and living conditions among the poor.",
"For more information, see <a href='https://arxiv.org/abs/2411.02134' target='_blank'>https://arxiv.org/abs/2411.02134</a>",
"<div style='font-size: 10px; line-height: 1.5;'>",
"<b>Glossary:</b><br>",
"• <b>Model:</b> The neural-network backbone (e.g., clip-rsicd) transforming satellite images into numerical representations.<br>",
"• <b>Metric:</b> The criterion (e.g., RATE Ratio, RMSE) measuring performance or heterogeneity detection.<br>",
"• <b>Compare to best single-scale:</b> Toggle showing metric improvement relative to the best single-scale baseline.<br>",
"• <b>ImageDim1, ImageDim2:</b> Image sizes (e.g., 64×64, 128×128) for multi-scale analysis.<br>",
"• <b>RATE Ratio:</b> Statistic indicating how well the model detects treatment-effect variation.<br>",
"• <b>PC:</b> Principal Components; a compression step of neural representations.<br>",
"• <b>MeanDiff, MeanDiff_pc:</b> Gain in RATE Ratio from multi-scale vs. single-scale, with '_pc' for compressed data.<br>",
"• <b>RMSE:</b> Root Mean Squared Error, measuring prediction accuracy in simulations.<br>",
"</div>"
)
} else {
paste("This heatmap displays", input$metric,
"for", input$application,
"using the", input$model,
"model across different image dimension combinations. The green star marks the optimal point.",
"The Peru RCT involves a multifaceted graduation program treatment to reduce poverty outcomes.",
"The Uganda RCT involves a cash grant program to stimulate human capital and living conditions among the poor.",
"For more information, see <a href='https://arxiv.org/abs/2411.02134' target='_blank'>https://arxiv.org/abs/2411.02134</a>",
"<div style='font-size: 10px; line-height: 1.5;'>",
"<b>Glossary:</b><br>",
"• <b>Model:</b> The neural-network backbone (e.g., clip-rsicd) transforming satellite images into numerical representations.<br>",
"• <b>Metric:</b> The criterion (e.g., RATE Ratio, RMSE) measuring performance or heterogeneity detection.<br>",
"• <b>Compare to best single-scale:</b> Toggle showing metric improvement relative to the best single-scale baseline.<br>",
"• <b>ImageDim1, ImageDim2:</b> Image sizes (e.g., 64×64, 128×128) for multi-scale analysis.<br>",
"• <b>RATE Ratio:</b> Statistic indicating how well the model detects treatment-effect variation.<br>",
"• <b>PC:</b> Principal Components; a compression step of neural representations.<br>",
"• <b>MeanDiff, MeanDiff_pc:</b> Gain in RATE Ratio from multi-scale vs. single-scale, with '_pc' for compressed data.<br>",
"• <b>RMSE:</b> Root Mean Squared Error, measuring prediction accuracy in simulations.<br>",
"</div>"
)
}
})
}
# Run the Shiny App
shinyApp(ui = ui, server = server) |