MeanAudio / app.py
AndreasXi's picture
update
dd97a96
raw
history blame
13.9 kB
import warnings
import spaces
warnings.filterwarnings("ignore")
import logging
from argparse import ArgumentParser
from pathlib import Path
import torch
import torchaudio
import gradio as gr
from transformers import AutoModel
import laion_clap
from meanaudio.eval_utils import (
ModelConfig,
all_model_cfg,
generate_mf,
generate_fm,
setup_eval_logging,
)
from meanaudio.model.flow_matching import FlowMatching
from meanaudio.model.mean_flow import MeanFlow
from meanaudio.model.networks import MeanAudio, get_mean_audio
from meanaudio.model.utils.features_utils import FeaturesUtils
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import gc
from datetime import datetime
from huggingface_hub import snapshot_download
import numpy as np
log = logging.getLogger()
device = "cpu"
if torch.cuda.is_available():
device = "cuda"
setup_eval_logging()
OUTPUT_DIR = Path("./output/gradio")
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
NUM_SAMPLE = 1
# Global model cache to avoid reloading
MODEL_CACHE = {}
FEATURE_UTILS_CACHE = {}
def ensure_models_downloaded():
for variant, model_cfg in all_model_cfg.items():
if not model_cfg.model_path.exists():
log.info(f'Model {variant} not found, downloading...')
snapshot_download(repo_id="AndreasXi/MeanAudio", local_dir="./weights")
break
def load_model_if_needed(variant: str):
if variant in MODEL_CACHE:
return MODEL_CACHE[variant], FEATURE_UTILS_CACHE[variant]
log.info(f"Loading model {variant} for the first time...")
model_cfg = all_model_cfg[variant]
net = get_mean_audio(model_cfg.model_name, use_rope=True, text_c_dim=512)
net = net.to(device, torch.bfloat16).eval()
net.load_weights(torch.load(model_cfg.model_path, map_location=device, weights_only=True))
feature_utils = FeaturesUtils(
tod_vae_ckpt=model_cfg.vae_path,
enable_conditions=True,
encoder_name="t5_clap",
mode=model_cfg.mode,
bigvgan_vocoder_ckpt=model_cfg.bigvgan_16k_path,
need_vae_encoder=False
)
feature_utils = feature_utils.to(device, torch.bfloat16).eval()
MODEL_CACHE[variant] = net
FEATURE_UTILS_CACHE[variant] = feature_utils
log.info(f"Model {variant} loaded and cached successfully")
return net, feature_utils
ensure_models_downloaded()
@spaces.GPU(duration=60)
@torch.inference_mode()
def generate_audio_gradio(
prompt,
negative_prompt,
duration,
cfg_strength,
num_steps,
seed,
variant,
):
dtype = torch.bfloat16
if duration <= 0 or num_steps <= 0:
raise ValueError("Duration and number of steps must be positive.")
if variant not in all_model_cfg:
raise ValueError(f"Unknown model variant: {variant}. Available: {list(all_model_cfg.keys())}")
net, feature_utils = load_model_if_needed(variant)
model = all_model_cfg[variant]
seq_cfg = model.seq_cfg
seq_cfg.duration = duration
net.update_seq_lengths(seq_cfg.latent_seq_len)
if variant == 'meanaudio_s_ac' or variant == 'meanaudio_s_full':
use_meanflow=True
elif variant == 'fluxaudio_s_full':
use_meanflow=False
if use_meanflow:
sampler = MeanFlow(steps=num_steps)
log.info("Using MeanFlow for generation.")
generation_func = generate_mf
sampler_arg_name = "mf"
cfg_strength = 0
else:
sampler = FlowMatching(
min_sigma=0, inference_mode="euler", num_steps=num_steps
)
log.info("Using FlowMatching for generation.")
generation_func = generate_fm
sampler_arg_name = "fm"
rng = torch.Generator(device=device)
rng.manual_seed(seed)
audios = generation_func(
[prompt]*NUM_SAMPLE,
negative_text=None,
feature_utils=feature_utils,
net=net,
rng=rng,
cfg_strength=cfg_strength,
**{sampler_arg_name: sampler},
)
audio = audios[0].float().cpu()
def fade_out(x, sr, fade_ms=30):
n = len(x)
k = int(sr * fade_ms / 1000)
if k <= 0 or k >= n:
return x
w = np.linspace(1.0, 0.0, k)
x[-k:] = x[-k:] * w
return x
audio = fade_out(audio, seq_cfg.sampling_rate)
# text_embed = laion_clap_model.get_text_embedding(prompt, use_tensor=True).squeeze()
# audio_embed = laion_clap_model.get_audio_embedding_from_data(audios[:,0,:].float().cpu(), use_tensor=True).squeeze()
# scores = torch.cosine_similarity(text_embed.expand(audio_embed.shape[0], -1),
# audio_embed,
# dim=-1)
# log.info(scores)
# log.info(torch.argmax(scores).item())
# audio = audios[torch.argmax(scores).item()].float().cpu()
safe_prompt = (
"".join(c for c in prompt if c.isalnum() or c in (" ", "_"))
.rstrip()
.replace(" ", "_")[:50]
)
current_time_string = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
filename = f"{safe_prompt}_{current_time_string}.flac"
save_path = OUTPUT_DIR / filename
torchaudio.save(str(save_path), audio, seq_cfg.sampling_rate)
log.info(f"Audio saved to {save_path}")
if device == "cuda":
torch.cuda.empty_cache()
return (
f"Generated audio for prompt: '{prompt}' using {'MeanFlow' if use_meanflow else 'FlowMatching'}",
str(save_path),
)
theme = gr.themes.Soft(
primary_hue="blue",
secondary_hue="slate",
neutral_hue="slate",
text_size="sm",
spacing_size="sm",
).set(
background_fill_primary="*neutral_50",
background_fill_secondary="*background_fill_primary",
block_background_fill="*background_fill_primary",
block_border_width="0px",
panel_background_fill="*neutral_50",
panel_border_width="0px",
input_background_fill="*neutral_100",
input_border_color="*neutral_200",
button_primary_background_fill="*primary_300",
button_primary_background_fill_hover="*primary_400",
button_secondary_background_fill="*neutral_200",
button_secondary_background_fill_hover="*neutral_300",
)
custom_css = """
#main-headertitle {
text-align: center;
margin-top: 15px;
margin-bottom: 10px;
color: var(--neutral-600);
font-weight: 600;
}
#main-header {
text-align: center;
margin-top: 5px;
margin-bottom: 10px;
color: var(--neutral-600);
font-weight: 600;
}
#model-settings-header, #generation-settings-header {
color: var(--neutral-600);
margin-top: 8px;
margin-bottom: 8px;
font-weight: 500;
font-size: 1.1em;
}
.setting-section {
padding: 10px 12px;
border-radius: 6px;
background-color: var(--neutral-50);
margin-bottom: 10px;
border: 1px solid var(--neutral-100);
}
hr {
border: none;
height: 1px;
background-color: var(--neutral-200);
margin: 8px 0;
}
#generate-btn {
width: 100%;
max-width: 250px;
margin: 10px auto;
display: block;
padding: 10px 15px;
font-size: 16px;
border-radius: 5px;
}
#status-box {
min-height: 50px;
display: flex;
align-items: center;
justify-content: center;
padding: 8px;
border-radius: 5px;
border: 1px solid var(--neutral-200);
color: var(--neutral-700);
}
#project-badges {
text-align: center;
margin-top: 30px;
margin-bottom: 20px;
}
#project-badges #badge-container {
display: flex;
gap: 10px;
align-items: center;
justify-content: center;
flex-wrap: wrap;
}
#project-badges img {
border-radius: 5px;
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
height: 20px;
transition: transform 0.1s ease, box-shadow 0.1s ease;
}
#project-badges a:hover img {
transform: translateY(-2px);
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.15);
}
#audio-output {
height: 200px;
border-radius: 5px;
border: 1px solid var(--neutral-200);
}
.gradio-dropdown label, .gradio-checkbox label, .gradio-number label, .gradio-textbox label {
font-weight: 500;
color: var(--neutral-700);
font-size: 0.9em;
}
.gradio-row {
gap: 8px;
}
.gradio-block {
margin-bottom: 8px;
}
.setting-section .gradio-block {
margin-bottom: 6px;
}
::-webkit-scrollbar {
width: 8px;
height: 8px;
}
::-webkit-scrollbar-track {
background: var(--neutral-100);
border-radius: 4px;
}
::-webkit-scrollbar-thumb {
background: var(--neutral-300);
border-radius: 4px;
}
::-webkit-scrollbar-thumb:hover {
background: var(--neutral-400);
}
* {
scrollbar-width: thin;
scrollbar-color: var(--neutral-300) var(--neutral-100);
}
"""
with gr.Blocks(title="MeanAudio Generator", theme=theme, css=custom_css) as demo:
gr.Markdown("# MeanAudio: Fast and Faithful Text-to-Audio Generation with Mean Flows", elem_id="main-header")
badge_html = '''
<div id="project-badges"> <!-- 使用 ID
以便应用 CSS -->
<div id="badge-container"> <!-- 添加这个容器 div 并使用 ID -->
<a href="https://huggingface.co/junxiliu/MeanAudio">
<img src="https://img.shields.io/badge/Model-HuggingFace-violet?logo=huggingface" alt="Hugging Face Model">
</a>
<a href="https://huggingface.co/spaces/chenxie95/MeanAudio">
<img src="https://img.shields.io/badge/Space-HuggingFace-8A2BE2?logo=huggingface" alt="Hugging Face Space">
</a>
<a href="https://meanaudio.github.io/">
<img src="https://img.shields.io/badge/Project-Page-brightred?style=flat" alt="Project Page">
</a>
<a href="https://github.com/xiquan-li/MeanAudio">
<img src="https://img.shields.io/badge/Code-GitHub-black?logo=github" alt="GitHub">
</a>
</div>
</div>
'''
gr.HTML(badge_html)
with gr.Column(elem_classes="setting-section"):
with gr.Row():
available_variants = (
list(all_model_cfg.keys()) if all_model_cfg else []
)
default_variant = (
'meanaudio_mf'
)
variant = gr.Dropdown(
label="Model Variant",
choices=available_variants,
value=default_variant,
interactive=True,
scale=3,
)
with gr.Column(elem_classes="setting-section"):
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
placeholder="Describe the sound you want to generate...",
scale=1,
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
placeholder="Describe sounds you want to avoid...",
value="",
scale=1,
)
with gr.Row():
duration = gr.Number(
label="Duration (sec)", value=10.0, minimum=0.1, scale=1
)
cfg_strength = gr.Number(
label="CFG (Meanflow forced to 3)", value=3, minimum=0.0, scale=1
)
with gr.Row():
seed = gr.Number(
label="Seed (-1 for random)", value=42, precision=0, scale=1
)
num_steps = gr.Number(
label="Number of Steps",
value=1,
precision=0,
minimum=1,
scale=1,
)
generate_button = gr.Button("Generate", variant="primary", elem_id="generate-btn")
generate_output_text = gr.Textbox(
label="Result Status", interactive=False, elem_id="status-box"
)
audio_output = gr.Audio(
label="Generated Audio", type="filepath", elem_id="audio-output"
)
generate_button.click(
fn=generate_audio_gradio,
inputs=[
prompt,
negative_prompt,
duration,
cfg_strength,
num_steps,
seed,
variant,
],
outputs=[generate_output_text, audio_output],
)
audio_examples = [
["Typing on a keyboard", "", 10.0, 3, 1, 42, "meanaudio_mf"],
["A man speaks followed by a popping noise and laughter", "", 10.0, 3, 1, 42, "meanaudio_mf"],
["Some humming followed by a toilet flushing", "", 10.0, 3, 2, 42, "meanaudio_mf"],
["Rain falling on a hard surface as thunder roars in the distance", "", 10.0, 3, 5, 42, "meanaudio_mf"],
["Food sizzling and oil popping", "", 10.0, 3, 25, 42, "meanaudio_mf"],
["Pots and dishes clanking as a man talks followed by liquid pouring into a container", "", 8.0, 3, 2, 42, "meanaudio_mf"],
["A few seconds of silence then a rasping sound against wood", "", 12.0, 3, 2, 42, "meanaudio_mf"],
["A man speaks as he gives a speech and then the crowd cheers", "", 10.0, 3, 25, 42, "fluxaudio_fm"],
["A goat bleating repeatedly", "", 10.0, 3, 50, 123, "fluxaudio_fm"],
["A speech and gunfire followed by a gun being loaded", "", 10.0, 3, 1, 42, "meanaudio_mf"],
["Tires squealing followed by an engine revving", "", 12.0, 4, 25, 456, "fluxaudio_fm"],
["Hammer slowly hitting the wooden table", "", 10.0, 3.5, 25, 42, "fluxaudio_fm"],
["Dog barking excitedly and man shouting as race car engine roars past", "", 10.0, 3, 1, 42, "meanaudio_mf"],
["A dog barking and a cat mewing and a racing car passes by", "", 12.0, 3, 5, -1, "meanaudio_mf"],
["Whistling with birds chirping", "", 10.0, 4, 50, 42, "fluxaudio_fm"],
]
gr.Examples(
examples=audio_examples,
inputs=[prompt, negative_prompt, duration, cfg_strength, num_steps, seed, variant],
#outputs=[generate_output_text, audio_output],
#fn=generate_audio_gradio,
examples_per_page=5,
label="Example Prompts",
)
if __name__ == "__main__":
demo.launch()