MeanAudio / app.py
junxiliu's picture
chang
90cc3b4
raw
history blame
12.5 kB
import warnings
import spaces
warnings.filterwarnings("ignore", category=FutureWarning)
import logging
from argparse import ArgumentParser
from pathlib import Path
import torch
import torchaudio
import gradio as gr
from transformers import AutoModel
from meanaudio.eval_utils import (
ModelConfig,
all_model_cfg,
generate_mf,
generate_fm,
setup_eval_logging,
)
from meanaudio.model.flow_matching import FlowMatching
from meanaudio.model.mean_flow import MeanFlow
from meanaudio.model.networks import MeanAudio, get_mean_audio
from meanaudio.model.utils.features_utils import FeaturesUtils
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import gc
from datetime import datetime
from huggingface_hub import snapshot_download
log = logging.getLogger()
device = "cpu"
if torch.cuda.is_available():
device = "cuda"
setup_eval_logging()
OUTPUT_DIR = Path("./output/gradio")
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
snapshot_download(repo_id="google/flan-t5-large")
#snapshot_download(repo_id="google-bert/bert-base-uncased")
a=AutoModel.from_pretrained('bert-base-uncased')
b=AutoModel.from_pretrained('roberta-base')
#snapshot_download(repo_id="FacebookAI/roberta-base")
snapshot_download(repo_id="junxiliu/Meanaudio", local_dir="./weights",allow_patterns=["*.pt", "*.pth"] )
current_model_state = {
"net": None,
"feature_utils": None,
"seq_cfg": None,
"args": None,
}
def load_model_if_needed(
variant, model_path, encoder_name, use_rope, text_c_dim, full_precision
):
global current_model_state
dtype = torch.float32 if full_precision else torch.bfloat16
needs_reload = (
current_model_state["args"] is None
or current_model_state["args"].variant != variant
or current_model_state["args"].model_path != model_path
or current_model_state["args"].encoder_name != encoder_name
or current_model_state["args"].use_rope != use_rope
or current_model_state["args"].text_c_dim != text_c_dim
or current_model_state["args"].full_precision != full_precision
)
if needs_reload:
try:
if variant not in all_model_cfg:
raise ValueError(f"Unknown model variant: {variant}")
model: ModelConfig = all_model_cfg[variant]
seq_cfg = model.seq_cfg
class MockArgs:
pass
mock_args = MockArgs()
mock_args.variant = variant
mock_args.model_path = model_path
mock_args.encoder_name = encoder_name
mock_args.use_rope = use_rope
mock_args.text_c_dim = text_c_dim
mock_args.full_precision = full_precision
net: MeanAudio = (
get_mean_audio(
model.model_name,
use_rope=mock_args.use_rope,
text_c_dim=mock_args.text_c_dim,
)
.to(device, dtype)
.eval()
)
net.load_weights(
torch.load(
mock_args.model_path, map_location=device, weights_only=True
)
)
log.info(f"Loaded weights from {mock_args.model_path}")
feature_utils = FeaturesUtils(
tod_vae_ckpt=model.vae_path,
enable_conditions=True,
encoder_name=mock_args.encoder_name,
mode=model.mode,
bigvgan_vocoder_ckpt=model.bigvgan_16k_path,
need_vae_encoder=False,
)
feature_utils = feature_utils.to(device, dtype).eval()
current_model_state["net"] = net
current_model_state["feature_utils"] = feature_utils
current_model_state["seq_cfg"] = seq_cfg
current_model_state["args"] = mock_args
log.info(f"Model '{variant}' loaded successfully.")
return True
except Exception as e:
log.error(f"Error loading model: {e}")
current_model_state = {
"net": None,
"feature_utils": None,
"seq_cfg": None,
"args": None,
}
raise e
else:
log.info(f"Model '{variant}' already loaded with current settings.")
return False
@spaces.GPU
@torch.inference_mode()
def generate_audio_gradio(
prompt,
negative_prompt,
duration,
cfg_strength,
num_steps,
seed,
variant,
full_precision,
):
global current_model_state
use_meanflow = variant == "meanaudio_mf"
model_path = (
"./weights/meanaudio_mf.pth"
if use_meanflow
else "./weights/fluxaudio_fm.pth"
)
encoder_name = "t5_clap"
use_rope = True
text_c_dim = 512
try:
load_model_if_needed(
variant, model_path, encoder_name, use_rope, text_c_dim, full_precision
)
except Exception as e:
return f"Error loading model: {str(e)}", None
if current_model_state["net"] is None:
return "Error: Model could not be loaded.", None
net = current_model_state["net"]
feature_utils = current_model_state["feature_utils"]
seq_cfg = current_model_state["seq_cfg"]
args = current_model_state["args"]
dtype = torch.float32 if args.full_precision else torch.bfloat16
try:
seq_cfg.duration = duration
net.update_seq_lengths(seq_cfg.latent_seq_len)
rng = torch.Generator(device=device)
if seed >= 0:
rng.manual_seed(seed)
else:
rng.seed()
if use_meanflow:
sampler = MeanFlow(steps=num_steps)
log.info("Using MeanFlow for generation.")
generation_func = generate_mf
sampler_arg_name = "mf"
cfg_strength = 3
else:
sampler = FlowMatching(
min_sigma=0, inference_mode="euler", num_steps=num_steps
)
log.info("Using FlowMatching for generation.")
generation_func = generate_fm
sampler_arg_name = "fm"
prompts = [prompt]
audios = generation_func(
prompts,
negative_text=[negative_prompt],
feature_utils=feature_utils,
net=net,
rng=rng,
cfg_strength=cfg_strength,
**{sampler_arg_name: sampler},
)
audio = audios.float().cpu()[0]
safe_prompt = (
"".join(c for c in prompt if c.isalnum() or c in (" ", "_"))
.rstrip()
.replace(" ", "_")[:50]
)
current_time_string = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
filename = f"{safe_prompt}_{current_time_string}.flac"
save_path = OUTPUT_DIR / filename
torchaudio.save(str(save_path), audio, seq_cfg.sampling_rate)
log.info(f"Audio saved to {save_path}")
gc.collect()
return (
f"Generated audio for prompt: '{prompt}' using {'MeanFlow' if use_meanflow else 'FlowMatching'}",
str(save_path),
)
except Exception as e:
gc.collect()
log.error(f"Generation error: {e}")
return f"Error during generation: {str(e)}", None
theme = gr.themes.Soft(
primary_hue="blue",
secondary_hue="slate",
neutral_hue="slate",
text_size="sm",
spacing_size="sm",
).set(
background_fill_primary="*neutral_50",
background_fill_secondary="*background_fill_primary",
block_background_fill="*background_fill_primary",
block_border_width="0px",
panel_background_fill="*neutral_50",
panel_border_width="0px",
input_background_fill="*neutral_100",
input_border_color="*neutral_200",
button_primary_background_fill="*primary_300",
button_primary_background_fill_hover="*primary_400",
button_secondary_background_fill="*neutral_200",
button_secondary_background_fill_hover="*neutral_300",
)
custom_css = """
#main-header {
text-align: center;
margin-top: 5px;
margin-bottom: 10px;
color: var(--neutral-600);
font-weight: 600;
}
#model-settings-header, #generation-settings-header {
color: var(--neutral-600);
margin-top: 8px;
margin-bottom: 8px;
font-weight: 500;
font-size: 1.1em;
}
.setting-section {
padding: 10px 12px;
border-radius: 6px;
background-color: var(--neutral-50);
margin-bottom: 10px;
border: 1px solid var(--neutral-100);
}
hr {
border: none;
height: 1px;
background-color: var(--neutral-200);
margin: 8px 0;
}
#generate-btn {
width: 100%;
max-width: 250px;
margin: 10px auto;
display: block;
padding: 10px 15px;
font-size: 16px;
border-radius: 5px;
}
#status-box {
min-height: 50px;
display: flex;
align-items: center;
justify-content: center;
padding: 8px;
border-radius: 5px;
border: 1px solid var(--neutral-200);
color: var(--neutral-700);
}
#audio-output {
height: 100px;
border-radius: 5px;
border: 1px solid var(--neutral-200);
}
.gradio-dropdown label, .gradio-checkbox label, .gradio-number label, .gradio-textbox label {
font-weight: 500;
color: var(--neutral-700);
font-size: 0.9em;
}
.gradio-row {
gap: 8px;
}
.gradio-block {
margin-bottom: 8px;
}
.setting-section .gradio-block {
margin-bottom: 6px;
}
::-webkit-scrollbar {
width: 8px;
height: 8px;
}
::-webkit-scrollbar-track {
background: var(--neutral-100);
border-radius: 4px;
}
::-webkit-scrollbar-thumb {
background: var(--neutral-300);
border-radius: 4px;
}
::-webkit-scrollbar-thumb:hover {
background: var(--neutral-400);
}
* {
scrollbar-width: thin;
scrollbar-color: var(--neutral-300) var(--neutral-100);
}
"""
with gr.Blocks(title="MeanAudio Generator", theme=theme, css=custom_css) as demo:
gr.Markdown("# MeanAudio Text-to-Audio Generator", elem_id="main-header")
gr.Markdown("### Model and Generation Settings", elem_id="model-settings-header")
with gr.Column(elem_classes="setting-section"):
with gr.Row():
available_variants = (
list(all_model_cfg.keys()) if all_model_cfg else []
)
default_variant = (
'meanaudio_mf'
)
variant = gr.Dropdown(
label="Model Variant",
choices=available_variants,
value=default_variant,
interactive=True,
scale=3,
)
full_precision = gr.Checkbox(
label="Full Precision (float32)", value=True, scale=1
)
gr.Markdown("### Audio Generation", elem_id="generation-settings-header")
with gr.Column(elem_classes="setting-section"):
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
placeholder="Describe the sound you want to generate...",
scale=1,
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
placeholder="Describe sounds you want to avoid...",
value="",
scale=1,
)
with gr.Row():
duration = gr.Number(
label="Duration (sec)", value=10.0, minimum=0.1, scale=1
)
cfg_strength = gr.Number(
label="CFG (Meanflow forced to 3)", value=3, minimum=0.0, scale=1
)
with gr.Row():
seed = gr.Number(
label="Seed (-1 for random)", value=42, precision=0, scale=1
)
num_steps = gr.Number(
label="Number of Steps",
value=1,
precision=0,
minimum=1,
scale=1,
)
generate_button = gr.Button("Generate", variant="primary", elem_id="generate-btn")
generate_output_text = gr.Textbox(
label="Result Status", interactive=False, elem_id="status-box"
)
audio_output = gr.Audio(
label="Generated Audio", type="filepath", elem_id="audio-output"
)
generate_button.click(
fn=generate_audio_gradio,
inputs=[
prompt,
negative_prompt,
duration,
cfg_strength,
num_steps,
seed,
variant,
full_precision,
],
outputs=[generate_output_text, audio_output],
)
if __name__ == "__main__":
demo.launch()