File size: 12,507 Bytes
0ad0454 c847c87 0ad0454 90cc3b4 0ad0454 406d533 0ad0454 ec164a8 0ad0454 978c03c 31a06c8 406d533 0ad0454 c847c87 7fe1c8e 0ad0454 ec164a8 0ad0454 7bd7f06 0ad0454 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
import warnings
import spaces
warnings.filterwarnings("ignore", category=FutureWarning)
import logging
from argparse import ArgumentParser
from pathlib import Path
import torch
import torchaudio
import gradio as gr
from transformers import AutoModel
from meanaudio.eval_utils import (
ModelConfig,
all_model_cfg,
generate_mf,
generate_fm,
setup_eval_logging,
)
from meanaudio.model.flow_matching import FlowMatching
from meanaudio.model.mean_flow import MeanFlow
from meanaudio.model.networks import MeanAudio, get_mean_audio
from meanaudio.model.utils.features_utils import FeaturesUtils
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import gc
from datetime import datetime
from huggingface_hub import snapshot_download
log = logging.getLogger()
device = "cpu"
if torch.cuda.is_available():
device = "cuda"
setup_eval_logging()
OUTPUT_DIR = Path("./output/gradio")
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
snapshot_download(repo_id="google/flan-t5-large")
#snapshot_download(repo_id="google-bert/bert-base-uncased")
a=AutoModel.from_pretrained('bert-base-uncased')
b=AutoModel.from_pretrained('roberta-base')
#snapshot_download(repo_id="FacebookAI/roberta-base")
snapshot_download(repo_id="junxiliu/Meanaudio", local_dir="./weights",allow_patterns=["*.pt", "*.pth"] )
current_model_state = {
"net": None,
"feature_utils": None,
"seq_cfg": None,
"args": None,
}
def load_model_if_needed(
variant, model_path, encoder_name, use_rope, text_c_dim, full_precision
):
global current_model_state
dtype = torch.float32 if full_precision else torch.bfloat16
needs_reload = (
current_model_state["args"] is None
or current_model_state["args"].variant != variant
or current_model_state["args"].model_path != model_path
or current_model_state["args"].encoder_name != encoder_name
or current_model_state["args"].use_rope != use_rope
or current_model_state["args"].text_c_dim != text_c_dim
or current_model_state["args"].full_precision != full_precision
)
if needs_reload:
try:
if variant not in all_model_cfg:
raise ValueError(f"Unknown model variant: {variant}")
model: ModelConfig = all_model_cfg[variant]
seq_cfg = model.seq_cfg
class MockArgs:
pass
mock_args = MockArgs()
mock_args.variant = variant
mock_args.model_path = model_path
mock_args.encoder_name = encoder_name
mock_args.use_rope = use_rope
mock_args.text_c_dim = text_c_dim
mock_args.full_precision = full_precision
net: MeanAudio = (
get_mean_audio(
model.model_name,
use_rope=mock_args.use_rope,
text_c_dim=mock_args.text_c_dim,
)
.to(device, dtype)
.eval()
)
net.load_weights(
torch.load(
mock_args.model_path, map_location=device, weights_only=True
)
)
log.info(f"Loaded weights from {mock_args.model_path}")
feature_utils = FeaturesUtils(
tod_vae_ckpt=model.vae_path,
enable_conditions=True,
encoder_name=mock_args.encoder_name,
mode=model.mode,
bigvgan_vocoder_ckpt=model.bigvgan_16k_path,
need_vae_encoder=False,
)
feature_utils = feature_utils.to(device, dtype).eval()
current_model_state["net"] = net
current_model_state["feature_utils"] = feature_utils
current_model_state["seq_cfg"] = seq_cfg
current_model_state["args"] = mock_args
log.info(f"Model '{variant}' loaded successfully.")
return True
except Exception as e:
log.error(f"Error loading model: {e}")
current_model_state = {
"net": None,
"feature_utils": None,
"seq_cfg": None,
"args": None,
}
raise e
else:
log.info(f"Model '{variant}' already loaded with current settings.")
return False
@spaces.GPU
@torch.inference_mode()
def generate_audio_gradio(
prompt,
negative_prompt,
duration,
cfg_strength,
num_steps,
seed,
variant,
full_precision,
):
global current_model_state
use_meanflow = variant == "meanaudio_mf"
model_path = (
"./weights/meanaudio_mf.pth"
if use_meanflow
else "./weights/fluxaudio_fm.pth"
)
encoder_name = "t5_clap"
use_rope = True
text_c_dim = 512
try:
load_model_if_needed(
variant, model_path, encoder_name, use_rope, text_c_dim, full_precision
)
except Exception as e:
return f"Error loading model: {str(e)}", None
if current_model_state["net"] is None:
return "Error: Model could not be loaded.", None
net = current_model_state["net"]
feature_utils = current_model_state["feature_utils"]
seq_cfg = current_model_state["seq_cfg"]
args = current_model_state["args"]
dtype = torch.float32 if args.full_precision else torch.bfloat16
try:
seq_cfg.duration = duration
net.update_seq_lengths(seq_cfg.latent_seq_len)
rng = torch.Generator(device=device)
if seed >= 0:
rng.manual_seed(seed)
else:
rng.seed()
if use_meanflow:
sampler = MeanFlow(steps=num_steps)
log.info("Using MeanFlow for generation.")
generation_func = generate_mf
sampler_arg_name = "mf"
cfg_strength = 3
else:
sampler = FlowMatching(
min_sigma=0, inference_mode="euler", num_steps=num_steps
)
log.info("Using FlowMatching for generation.")
generation_func = generate_fm
sampler_arg_name = "fm"
prompts = [prompt]
audios = generation_func(
prompts,
negative_text=[negative_prompt],
feature_utils=feature_utils,
net=net,
rng=rng,
cfg_strength=cfg_strength,
**{sampler_arg_name: sampler},
)
audio = audios.float().cpu()[0]
safe_prompt = (
"".join(c for c in prompt if c.isalnum() or c in (" ", "_"))
.rstrip()
.replace(" ", "_")[:50]
)
current_time_string = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
filename = f"{safe_prompt}_{current_time_string}.flac"
save_path = OUTPUT_DIR / filename
torchaudio.save(str(save_path), audio, seq_cfg.sampling_rate)
log.info(f"Audio saved to {save_path}")
gc.collect()
return (
f"Generated audio for prompt: '{prompt}' using {'MeanFlow' if use_meanflow else 'FlowMatching'}",
str(save_path),
)
except Exception as e:
gc.collect()
log.error(f"Generation error: {e}")
return f"Error during generation: {str(e)}", None
theme = gr.themes.Soft(
primary_hue="blue",
secondary_hue="slate",
neutral_hue="slate",
text_size="sm",
spacing_size="sm",
).set(
background_fill_primary="*neutral_50",
background_fill_secondary="*background_fill_primary",
block_background_fill="*background_fill_primary",
block_border_width="0px",
panel_background_fill="*neutral_50",
panel_border_width="0px",
input_background_fill="*neutral_100",
input_border_color="*neutral_200",
button_primary_background_fill="*primary_300",
button_primary_background_fill_hover="*primary_400",
button_secondary_background_fill="*neutral_200",
button_secondary_background_fill_hover="*neutral_300",
)
custom_css = """
#main-header {
text-align: center;
margin-top: 5px;
margin-bottom: 10px;
color: var(--neutral-600);
font-weight: 600;
}
#model-settings-header, #generation-settings-header {
color: var(--neutral-600);
margin-top: 8px;
margin-bottom: 8px;
font-weight: 500;
font-size: 1.1em;
}
.setting-section {
padding: 10px 12px;
border-radius: 6px;
background-color: var(--neutral-50);
margin-bottom: 10px;
border: 1px solid var(--neutral-100);
}
hr {
border: none;
height: 1px;
background-color: var(--neutral-200);
margin: 8px 0;
}
#generate-btn {
width: 100%;
max-width: 250px;
margin: 10px auto;
display: block;
padding: 10px 15px;
font-size: 16px;
border-radius: 5px;
}
#status-box {
min-height: 50px;
display: flex;
align-items: center;
justify-content: center;
padding: 8px;
border-radius: 5px;
border: 1px solid var(--neutral-200);
color: var(--neutral-700);
}
#audio-output {
height: 100px;
border-radius: 5px;
border: 1px solid var(--neutral-200);
}
.gradio-dropdown label, .gradio-checkbox label, .gradio-number label, .gradio-textbox label {
font-weight: 500;
color: var(--neutral-700);
font-size: 0.9em;
}
.gradio-row {
gap: 8px;
}
.gradio-block {
margin-bottom: 8px;
}
.setting-section .gradio-block {
margin-bottom: 6px;
}
::-webkit-scrollbar {
width: 8px;
height: 8px;
}
::-webkit-scrollbar-track {
background: var(--neutral-100);
border-radius: 4px;
}
::-webkit-scrollbar-thumb {
background: var(--neutral-300);
border-radius: 4px;
}
::-webkit-scrollbar-thumb:hover {
background: var(--neutral-400);
}
* {
scrollbar-width: thin;
scrollbar-color: var(--neutral-300) var(--neutral-100);
}
"""
with gr.Blocks(title="MeanAudio Generator", theme=theme, css=custom_css) as demo:
gr.Markdown("# MeanAudio Text-to-Audio Generator", elem_id="main-header")
gr.Markdown("### Model and Generation Settings", elem_id="model-settings-header")
with gr.Column(elem_classes="setting-section"):
with gr.Row():
available_variants = (
list(all_model_cfg.keys()) if all_model_cfg else []
)
default_variant = (
'meanaudio_mf'
)
variant = gr.Dropdown(
label="Model Variant",
choices=available_variants,
value=default_variant,
interactive=True,
scale=3,
)
full_precision = gr.Checkbox(
label="Full Precision (float32)", value=True, scale=1
)
gr.Markdown("### Audio Generation", elem_id="generation-settings-header")
with gr.Column(elem_classes="setting-section"):
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
placeholder="Describe the sound you want to generate...",
scale=1,
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
placeholder="Describe sounds you want to avoid...",
value="",
scale=1,
)
with gr.Row():
duration = gr.Number(
label="Duration (sec)", value=10.0, minimum=0.1, scale=1
)
cfg_strength = gr.Number(
label="CFG (Meanflow forced to 3)", value=3, minimum=0.0, scale=1
)
with gr.Row():
seed = gr.Number(
label="Seed (-1 for random)", value=42, precision=0, scale=1
)
num_steps = gr.Number(
label="Number of Steps",
value=1,
precision=0,
minimum=1,
scale=1,
)
generate_button = gr.Button("Generate", variant="primary", elem_id="generate-btn")
generate_output_text = gr.Textbox(
label="Result Status", interactive=False, elem_id="status-box"
)
audio_output = gr.Audio(
label="Generated Audio", type="filepath", elem_id="audio-output"
)
generate_button.click(
fn=generate_audio_gradio,
inputs=[
prompt,
negative_prompt,
duration,
cfg_strength,
num_steps,
seed,
variant,
full_precision,
],
outputs=[generate_output_text, audio_output],
)
if __name__ == "__main__":
demo.launch()
|