File size: 13,284 Bytes
09794cb
 
 
 
 
 
 
 
 
 
fec53ba
09794cb
 
 
 
 
 
 
0ff9928
09794cb
 
 
 
 
 
 
 
 
0ff9928
09794cb
 
0ff9928
09794cb
 
 
0ff9928
09794cb
 
73214d1
09794cb
0ff9928
 
 
09794cb
0ff9928
 
 
09794cb
0ff9928
09794cb
 
 
 
 
 
 
 
 
 
 
 
 
 
0ff9928
 
 
 
09794cb
0ff9928
 
 
 
 
 
 
 
 
09794cb
0ff9928
 
 
 
 
 
 
09794cb
 
0ff9928
 
 
 
 
09794cb
 
 
 
 
0ff9928
09794cb
 
 
 
 
 
 
0ff9928
 
 
 
09794cb
fec53ba
 
09794cb
 
 
 
 
 
ac87bd7
 
 
0ff9928
 
44f10fc
 
0ff9928
09794cb
 
 
 
 
 
 
 
1bb9319
09794cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e91de07
b710c3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09794cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e91de07
09794cb
 
 
 
 
 
 
e91de07
09794cb
 
 
 
 
 
 
 
 
e6a7924
 
09794cb
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import warnings
import spaces
warnings.filterwarnings("ignore", category=FutureWarning)
import logging
from argparse import ArgumentParser
from pathlib import Path
import torch
import torchaudio
import gradio as gr
from transformers import AutoModel
import laion_clap
from meanaudio.eval_utils import (
    ModelConfig,
    all_model_cfg,
    generate_mf,
    generate_fm,
    setup_eval_logging,
)

from meanaudio.model.flow_matching import FlowMatching
from meanaudio.model.mean_flow import MeanFlow
from meanaudio.model.networks import MeanAudio, get_mean_audio
from meanaudio.model.utils.features_utils import FeaturesUtils
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import gc
from datetime import datetime
from huggingface_hub import snapshot_download

log = logging.getLogger()
device = "cpu"

if torch.cuda.is_available():
    device = "cuda"
setup_eval_logging()

OUTPUT_DIR = Path("./output/gradio")
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
NUM_SAMPLE=7

snapshot_download(repo_id="google/flan-t5-large")
a = AutoModel.from_pretrained('bert-base-uncased')
b = AutoModel.from_pretrained('roberta-base')

snapshot_download(repo_id="AndreasXi/MeanAudio", local_dir="./weights",allow_patterns=["*.pt", "*.pth"] )
_clap_ckpt_path='./weights/music_speech_audioset_epoch_15_esc_89.98.pt'
laion_clap_model = laion_clap.CLAP_Module(enable_fusion=False, amodel='HTSAT-base').cuda().eval()

laion_clap_model.load_ckpt(_clap_ckpt_path, verbose=False)


@spaces.GPU(duration=10)
@torch.inference_mode()
def generate_audio_gradio(
    prompt,
    negative_prompt,
    duration,
    cfg_strength,
    num_steps,
    seed,
    variant,
):
    dtype = torch.float32
    if duration <= 0 or num_steps <= 0:
        raise ValueError("Duration and number of steps must be positive.")
    if variant not in all_model_cfg:
        raise ValueError(f"Unknown model variant: {variant}. Available: {list(all_model_cfg.keys())}")

    model_path = all_model_cfg[variant].model_path  # by default, this will use meanaudio_s_full.pth or fluxaudio_s_full.pth
    model = all_model_cfg[variant]
    seq_cfg = model.seq_cfg
    seq_cfg.duration = duration
    
    net = get_mean_audio(model.model_name, use_rope=True, text_c_dim=512)
    net = net.to(device, dtype).eval()
    net.load_weights(torch.load(model_path, map_location=device, weights_only=True))
    net.update_seq_lengths(seq_cfg.latent_seq_len)

    feature_utils = FeaturesUtils(tod_vae_ckpt=model.vae_path,
                                  enable_conditions=True,
                                  encoder_name="t5_clap", 
                                  mode=model.mode,
                                  bigvgan_vocoder_ckpt=model.bigvgan_16k_path,
                                  need_vae_encoder=False)
    feature_utils = feature_utils.to(device, dtype).eval()


    if variant == 'meanaudio_s_ac' or variant == 'meanaudio_s_full':
        use_meanflow=True
    elif variant == 'fluxaudio_s_full':
        use_meanflow=False

    if use_meanflow:
        sampler = MeanFlow(steps=num_steps)
        log.info("Using MeanFlow for generation.")
        generation_func = generate_mf
        sampler_arg_name = "mf"
        cfg_strength = 0
    else:
        sampler = FlowMatching(
            min_sigma=0, inference_mode="euler", num_steps=num_steps
        )
        log.info("Using FlowMatching for generation.")
        generation_func = generate_fm
        sampler_arg_name = "fm"

    rng = torch.Generator(device=device)
    # rng.manual_seed(seed)

    audios = generation_func(
        [prompt]*NUM_SAMPLE,
        negative_text=[negative_prompt]*NUM_SAMPLE,
        feature_utils=feature_utils,
        net=net,
        rng=rng,
        cfg_strength=cfg_strength,
        **{sampler_arg_name: sampler},
    )
    text_embed = laion_clap_model.get_text_embedding(prompt, use_tensor=True).squeeze()
    audio_embed = laion_clap_model.get_audio_embedding_from_data(audios[:,0,:].float().cpu(), use_tensor=True).squeeze()
    scores = torch.cosine_similarity(text_embed.expand(audio_embed.shape[0], -1),
                                     audio_embed,
                                     dim=-1)
    log.info(scores)
    log.info(torch.argmax(scores).item())
    audio = audios[torch.argmax(scores).item()].float().cpu()
    safe_prompt = (
        "".join(c for c in prompt if c.isalnum() or c in (" ", "_"))
        .rstrip()
        .replace(" ", "_")[:50]
    )
    current_time_string = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
    filename = f"{safe_prompt}_{current_time_string}.flac"
    save_path = OUTPUT_DIR / filename
    torchaudio.save(str(save_path), audio, seq_cfg.sampling_rate)
    log.info(f"Audio saved to {save_path}")

    gc.collect()

    return (
        f"Generated audio for prompt: '{prompt}' using {'MeanFlow' if use_meanflow else 'FlowMatching'}",
        str(save_path),
    )

theme = gr.themes.Soft(
    primary_hue="blue",
    secondary_hue="slate",
    neutral_hue="slate",
    text_size="sm",
    spacing_size="sm",
).set(
    background_fill_primary="*neutral_50",
    background_fill_secondary="*background_fill_primary",
    block_background_fill="*background_fill_primary",
    block_border_width="0px",
    panel_background_fill="*neutral_50",
    panel_border_width="0px",
    input_background_fill="*neutral_100",
    input_border_color="*neutral_200",
    button_primary_background_fill="*primary_300",
    button_primary_background_fill_hover="*primary_400",
    button_secondary_background_fill="*neutral_200",
    button_secondary_background_fill_hover="*neutral_300",
)
custom_css = """
#main-headertitle {
    text-align: center;
    margin-top: 15px;
    margin-bottom: 10px;
    color: var(--neutral-600);
    font-weight: 600;
}
#main-header {
    text-align: center;
    margin-top: 5px;
    margin-bottom: 10px;
    color: var(--neutral-600);
    font-weight: 600;
}
#model-settings-header, #generation-settings-header {
    color: var(--neutral-600);
    margin-top: 8px;
    margin-bottom: 8px;
    font-weight: 500;
    font-size: 1.1em;
}
.setting-section {
    padding: 10px 12px;
    border-radius: 6px;
    background-color: var(--neutral-50);
    margin-bottom: 10px;
    border: 1px solid var(--neutral-100);
}
hr {
    border: none;
    height: 1px;
    background-color: var(--neutral-200);
    margin: 8px 0;
}
#generate-btn {
    width: 100%;
    max-width: 250px;
    margin: 10px auto;
    display: block;
    padding: 10px 15px;
    font-size: 16px;
    border-radius: 5px;
}
#status-box {
    min-height: 50px;
    display: flex;
    align-items: center;
    justify-content: center;
    padding: 8px;
    border-radius: 5px;
    border: 1px solid var(--neutral-200);
    color: var(--neutral-700);
}
#project-badges {
    text-align: center;
    margin-top: 30px;
    margin-bottom: 20px;
}
#project-badges #badge-container {
    display: flex;
    gap: 10px;
    align-items: center;
    justify-content: center;
    flex-wrap: wrap;
}
#project-badges img {
    border-radius: 5px;
    box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
    height: 20px;
    transition: transform 0.1s ease, box-shadow 0.1s ease;
}
#project-badges a:hover img {
    transform: translateY(-2px);
    box-shadow: 0 4px 8px rgba(0, 0, 0, 0.15);
}
#audio-output {
    height: 200px;
    border-radius: 5px;
    border: 1px solid var(--neutral-200);
}
.gradio-dropdown label, .gradio-checkbox label, .gradio-number label, .gradio-textbox label {
    font-weight: 500;
    color: var(--neutral-700);
    font-size: 0.9em;
}
.gradio-row {
   gap: 8px;
}
.gradio-block {
   margin-bottom: 8px;
}
.setting-section .gradio-block {
    margin-bottom: 6px;
}
::-webkit-scrollbar {
  width: 8px;
  height: 8px;
}
::-webkit-scrollbar-track {
  background: var(--neutral-100);
  border-radius: 4px;
}
::-webkit-scrollbar-thumb {
  background: var(--neutral-300);
  border-radius: 4px;
}
::-webkit-scrollbar-thumb:hover {
  background: var(--neutral-400);
}
* {
  scrollbar-width: thin;
  scrollbar-color: var(--neutral-300) var(--neutral-100);
}
"""
with gr.Blocks(title="MeanAudio Generator", theme=theme, css=custom_css) as demo:
    gr.Markdown("# MeanAudio: Fast and Faithful Text-to-Audio Generation with Mean Flows", elem_id="main-header")
    badge_html = '''
    <div id="project-badges"> <!-- 使用 ID
    以便应用 CSS -->
    <div id="badge-container"> <!-- 添加这个容器 div 并使用 ID -->
        <a href="https://huggingface.co/junxiliu/MeanAudio">
        <img src="https://img.shields.io/badge/Model-HuggingFace-violet?logo=huggingface" alt="Hugging Face Model">
        </a>
        <a href="https://huggingface.co/spaces/chenxie95/MeanAudio">
        <img src="https://img.shields.io/badge/Space-HuggingFace-8A2BE2?logo=huggingface" alt="Hugging Face Space">
        </a>
        <a href="https://meanaudio.github.io/">
        <img src="https://img.shields.io/badge/Project-Page-brightred?style=flat" alt="Project Page">
        </a>
        <a href="https://github.com/xiquan-li/MeanAudio">
        <img src="https://img.shields.io/badge/Code-GitHub-black?logo=github" alt="GitHub">
        </a>
    </div>
    </div>
    '''
    gr.HTML(badge_html)
    with gr.Column(elem_classes="setting-section"):
        with gr.Row():
            available_variants = (
                list(all_model_cfg.keys()) if all_model_cfg else []
            )
            default_variant = (
                'meanaudio_mf'
            )
            variant = gr.Dropdown(
                label="Model Variant",
                choices=available_variants,
                value=default_variant,
                interactive=True,
                scale=3,
            )
    with gr.Column(elem_classes="setting-section"):
        with gr.Row():
            prompt = gr.Textbox(
                label="Prompt",
                placeholder="Describe the sound you want to generate...",
                scale=1,
            )
            negative_prompt = gr.Textbox(
                label="Negative Prompt",
                placeholder="Describe sounds you want to avoid...",
                value="",
                scale=1,
            )
        with gr.Row():
            duration = gr.Number(
                label="Duration (sec)", value=10.0, minimum=0.1, scale=1
            )
            cfg_strength = gr.Number(
                label="CFG (Meanflow forced to 3)", value=3, minimum=0.0, scale=1
            )
        with gr.Row():
            seed = gr.Number(
                label="Seed (-1 for random)", value=42, precision=0, scale=1
            )
            num_steps = gr.Number(
                label="Number of Steps",
                value=1,
                precision=0,
                minimum=1,
                scale=1,
            )
    generate_button = gr.Button("Generate", variant="primary", elem_id="generate-btn")
    generate_output_text = gr.Textbox(
        label="Result Status", interactive=False, elem_id="status-box"
    )
    audio_output = gr.Audio(
        label="Generated Audio", type="filepath", elem_id="audio-output"
    )
    generate_button.click(
        fn=generate_audio_gradio,
        inputs=[
            prompt,
            negative_prompt,
            duration,
            cfg_strength,
            num_steps,
            seed,
            variant,
        ],
        outputs=[generate_output_text, audio_output],
    )
    audio_examples = [
        ["Typing on a keyboard", "", 10.0, 3, 1, 42, "meanaudio_mf"],
        ["A man speaks followed by a popping noise and laughter", "", 10.0, 3, 1, 42, "meanaudio_mf"],
        ["Some humming followed by a toilet flushing", "", 10.0, 3, 2, 42, "meanaudio_mf"],
        ["Rain falling on a hard surface as thunder roars in the distance", "", 10.0, 3, 5, 42, "meanaudio_mf"],
        ["Food sizzling and oil popping", "", 10.0, 3, 25, 42, "meanaudio_mf"],
        ["Pots and dishes clanking as a man talks followed by liquid pouring into a container", "", 8.0, 3, 2, 42, "meanaudio_mf"],
        ["A few seconds of silence then a rasping sound against wood", "", 12.0, 3, 2, 42, "meanaudio_mf"],
        ["A man speaks as he gives a speech and then the crowd cheers", "", 10.0, 3, 25, 42, "fluxaudio_fm"],
        ["A goat bleating repeatedly", "", 10.0, 3, 50, 123, "fluxaudio_fm"],
        ["A speech and gunfire followed by a gun being loaded", "", 10.0, 3, 1, 42, "meanaudio_mf"],
        ["Tires squealing followed by an engine revving", "", 12.0, 4, 25, 456, "fluxaudio_fm"],
        ["Hammer slowly hitting the wooden table", "", 10.0, 3.5, 25, 42, "fluxaudio_fm"],
        ["Dog barking excitedly and man shouting as race car engine roars past", "", 10.0, 3, 1, 42, "meanaudio_mf"],
        ["A dog barking and a cat mewing and a racing car passes by", "", 12.0, 3, 5, -1, "meanaudio_mf"],
        ["Whistling with birds chirping", "", 10.0, 4, 50, 42, "fluxaudio_fm"],
    ]
    gr.Examples(
        examples=audio_examples,
        inputs=[prompt, negative_prompt, duration, cfg_strength, num_steps, seed, variant],
        #outputs=[generate_output_text, audio_output],
        #fn=generate_audio_gradio,
        examples_per_page=5,
        label="Example Prompts",
    )

if __name__ == "__main__":
    demo.launch()