Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -1,32 +1,11 @@
|
|
1 |
-
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
-
from fastapi.
|
4 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForQuestionAnswering
|
5 |
-
from sentence_transformers import SentenceTransformer, util
|
6 |
-
from typing import Optional
|
7 |
-
import io
|
8 |
-
import fitz # PyMuPDF
|
9 |
-
from PIL import Image
|
10 |
-
import pandas as pd
|
11 |
-
import uvicorn
|
12 |
-
from functools import lru_cache
|
13 |
-
from docx import Document
|
14 |
-
from pptx import Presentation
|
15 |
-
import pytesseract
|
16 |
-
import torch
|
17 |
-
from typing import Dict
|
18 |
-
from transformers import Pipeline
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
from fastapi import FastAPI, UploadFile, File, Form, HTTPException, status
|
25 |
-
from fastapi.middleware.cors import CORSMiddleware
|
26 |
-
from fastapi.responses import JSONResponse
|
27 |
from fastapi.encoders import jsonable_encoder
|
|
|
|
|
28 |
from transformers import pipeline, Pipeline
|
29 |
-
from typing import Dict, Optional, Tuple
|
30 |
from pydantic import BaseModel, constr, validator
|
31 |
import io
|
32 |
import fitz # PyMuPDF
|
@@ -41,74 +20,13 @@ import os
|
|
41 |
from datetime import datetime
|
42 |
from pathlib import Path
|
43 |
import re
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
from fastapi.responses import HTMLResponse
|
52 |
-
from fastapi.templating import Jinja2Templates
|
53 |
-
from fastapi import Request
|
54 |
-
from pathlib import Path
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
import os
|
59 |
-
print(os.getcwd()) # This prints the current working directory
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
# Initialize FastAPI app
|
69 |
-
app = FastAPI()
|
70 |
-
print(os.getcwd())
|
71 |
-
templates = Jinja2Templates(directory=str(Path(__file__).parent / "templates"))
|
72 |
-
# Configure CORS
|
73 |
-
app.add_middleware(
|
74 |
-
CORSMiddleware,
|
75 |
-
allow_origins=[
|
76 |
-
"https://*.hf.space",
|
77 |
-
"http://localhost",
|
78 |
-
"http://localhost:8000"
|
79 |
-
],
|
80 |
-
allow_credentials=True,
|
81 |
-
allow_methods=["*"],
|
82 |
-
allow_headers=["*"],
|
83 |
-
)
|
84 |
-
|
85 |
-
# Serve static files (frontend)
|
86 |
-
app.mount("/static", StaticFiles(directory="static"), name="static")
|
87 |
-
|
88 |
-
# Model loading with caching
|
89 |
-
@lru_cache()
|
90 |
-
def get_summarizer():
|
91 |
-
return pipeline("summarization", model="facebook/bart-large-cnn")
|
92 |
-
|
93 |
-
@lru_cache()
|
94 |
-
def get_image_captioning():
|
95 |
-
return pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
|
96 |
-
|
97 |
-
@lru_cache()
|
98 |
-
def get_translator():
|
99 |
-
return pipeline("translation", model="facebook/nllb-200-distilled-600M")
|
100 |
-
@lru_cache()
|
101 |
-
def get_qa_model():
|
102 |
-
return pipeline("question-answering", model="deepset/roberta-base-squad2")
|
103 |
-
|
104 |
-
|
105 |
-
#########################################################
|
106 |
-
|
107 |
|
108 |
# Configure logging
|
109 |
logging.basicConfig(level=logging.INFO)
|
110 |
logger = logging.getLogger(__name__)
|
111 |
|
|
|
112 |
app = FastAPI(
|
113 |
title="AI Document Analysis API",
|
114 |
description="Advanced document processing with multilingual support",
|
@@ -117,7 +35,7 @@ app = FastAPI(
|
|
117 |
redoc_url="/redoc"
|
118 |
)
|
119 |
|
120 |
-
# CORS
|
121 |
app.add_middleware(
|
122 |
CORSMiddleware,
|
123 |
allow_origins=["*"],
|
@@ -126,6 +44,12 @@ app.add_middleware(
|
|
126 |
allow_headers=["*"],
|
127 |
)
|
128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
# Constants
|
130 |
MAX_FILE_SIZE = 10 * 1024 * 1024 # 10MB
|
131 |
MAX_TEXT_LENGTH = 2000
|
@@ -195,7 +119,7 @@ class ErrorResponse(BaseModel):
|
|
195 |
|
196 |
# Exception Handler
|
197 |
@app.exception_handler(HTTPException)
|
198 |
-
async def http_exception_handler(request, exc):
|
199 |
error_response = ErrorResponse(
|
200 |
error=exc.detail,
|
201 |
status_code=exc.status_code,
|
@@ -282,18 +206,67 @@ def preprocess_text(text: str) -> str:
|
|
282 |
text = re.sub(r'\s+', ' ', text).strip()
|
283 |
return text[:MAX_TEXT_LENGTH] if len(text) > MAX_TEXT_LENGTH else text
|
284 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
@app.post("/qa")
|
286 |
async def question_answering(
|
287 |
file: UploadFile = File(...),
|
288 |
question: str = Form(...),
|
289 |
language: str = Form(DEFAULT_LANGUAGE)
|
290 |
-
)
|
291 |
try:
|
292 |
-
# Validation et extraction du texte
|
293 |
file_ext, content = await validate_and_read_file(file)
|
294 |
text = preprocess_text(extract_text(content, file_ext))
|
295 |
|
296 |
-
#
|
297 |
theme_keywords = {
|
298 |
"fr": ["thème", "sujet principal", "quoi le sujet"],
|
299 |
"en": ["theme", "main topic", "what is about"]
|
@@ -305,15 +278,17 @@ async def question_answering(
|
|
305 |
)
|
306 |
|
307 |
if is_theme_question:
|
308 |
-
|
|
|
|
|
|
|
|
|
309 |
theme_prompt = (
|
310 |
-
"
|
311 |
-
"
|
312 |
-
"
|
313 |
)
|
314 |
|
315 |
-
# Utilisation d'un LLM plus puissant pour l'analyse thématique
|
316 |
-
generator = get_model("moussaKam/barthez-orangesum-abstract", "text-generation")
|
317 |
response = generator(
|
318 |
theme_prompt.format(text=text[:2000]),
|
319 |
max_length=200,
|
@@ -321,43 +296,43 @@ async def question_answering(
|
|
321 |
do_sample=False
|
322 |
)
|
323 |
|
324 |
-
# Nettoyage de la réponse
|
325 |
theme = response[0]["generated_text"].split(":")[-1].strip()
|
326 |
-
theme = re.sub(r"^(Le|La)\s+", "", theme)
|
327 |
|
328 |
-
return
|
329 |
"question": question,
|
330 |
-
"answer": f"
|
331 |
-
"confidence": 0.95,
|
332 |
"language": language,
|
333 |
"processing_method": "theme_analysis",
|
334 |
"success": True
|
335 |
-
}
|
336 |
-
|
337 |
-
# ... reste du code pour les questions normales ...
|
338 |
-
|
339 |
-
# ... reste du code pour les questions normales ...
|
340 |
|
341 |
# Standard QA processing
|
342 |
-
|
|
|
|
|
343 |
|
344 |
-
|
345 |
-
|
346 |
-
|
|
|
|
|
|
|
347 |
"answer": "No clear answer found in the document" if language == "en" else "Aucune réponse claire trouvée dans le document",
|
348 |
"confidence": result["score"],
|
349 |
"language": language,
|
350 |
"warning": "low_confidence",
|
351 |
"success": True
|
352 |
-
}
|
353 |
|
354 |
-
return
|
355 |
-
"question":
|
356 |
"answer": result["answer"],
|
357 |
"confidence": result["score"],
|
358 |
"language": language,
|
359 |
"success": True
|
360 |
-
}
|
361 |
|
362 |
except HTTPException:
|
363 |
raise
|
@@ -369,66 +344,34 @@ async def question_answering(
|
|
369 |
details={"error": str(e)}
|
370 |
)
|
371 |
|
372 |
-
########################################################
|
373 |
-
@app.get("/", response_class=HTMLResponse)
|
374 |
-
def home ():
|
375 |
-
with open("static/indexAI.html","r") as file :
|
376 |
-
return file.read()
|
377 |
-
# API Endpoints
|
378 |
-
@app.get("/health")
|
379 |
-
async def health_check():
|
380 |
-
return {"status": "healthy"}
|
381 |
-
|
382 |
-
@app.post("/summarize")
|
383 |
-
async def summarize_document(file: UploadFile = File(...)):
|
384 |
-
try:
|
385 |
-
content = await file.read()
|
386 |
-
file_ext = file.filename.split(".")[-1].lower()
|
387 |
-
text = ""
|
388 |
-
|
389 |
-
if file_ext == "docx":
|
390 |
-
doc = Document(io.BytesIO(content))
|
391 |
-
text = " ".join([p.text for p in doc.paragraphs if p.text.strip()])
|
392 |
-
elif file_ext in ["xls", "xlsx"]:
|
393 |
-
df = pd.read_excel(io.BytesIO(content))
|
394 |
-
text = " ".join(df.iloc[:, 0].dropna().astype(str).tolist())
|
395 |
-
elif file_ext == "pptx":
|
396 |
-
ppt = Presentation(io.BytesIO(content))
|
397 |
-
text = " ".join([shape.text for slide in ppt.slides for shape in slide.shapes if hasattr(shape, "text")])
|
398 |
-
elif file_ext == "pdf":
|
399 |
-
pdf = fitz.open(stream=content, filetype="pdf")
|
400 |
-
text = " ".join([page.get_text("text") for page in pdf])
|
401 |
-
elif file_ext in ["jpg", "jpeg", "png"]:
|
402 |
-
image = Image.open(io.BytesIO(content))
|
403 |
-
text = get_image_captioning()(image)[0]['generated_text']
|
404 |
-
else:
|
405 |
-
raise HTTPException(400, "Unsupported file format")
|
406 |
-
|
407 |
-
if not text.strip():
|
408 |
-
raise HTTPException(400, "No extractable text found")
|
409 |
-
|
410 |
-
summarizer = get_summarizer()
|
411 |
-
chunks = [text[i:i+1000] for i in range(0, len(text), 1000)]
|
412 |
-
summary = " ".join([
|
413 |
-
summarizer(chunk, max_length=150, min_length=50, do_sample=False)[0]["summary_text"]
|
414 |
-
for chunk in chunks
|
415 |
-
])
|
416 |
-
|
417 |
-
return {"summary": summary}
|
418 |
-
except Exception as e:
|
419 |
-
raise HTTPException(500, f"Error processing document: {str(e)}")
|
420 |
-
#################################################################
|
421 |
-
|
422 |
-
###############################################
|
423 |
-
|
424 |
@app.post("/api/caption")
|
425 |
async def caption_image(file: UploadFile = File(...)):
|
426 |
try:
|
427 |
-
|
428 |
-
|
429 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
430 |
except Exception as e:
|
431 |
-
|
|
|
|
|
|
|
|
|
|
|
432 |
|
433 |
@app.post("/translate")
|
434 |
async def translate_text(
|
@@ -437,10 +380,22 @@ async def translate_text(
|
|
437 |
src_lang: str = Form("eng_Latn")
|
438 |
):
|
439 |
try:
|
440 |
-
|
441 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
442 |
except Exception as e:
|
443 |
-
|
|
|
|
|
|
|
|
|
|
|
444 |
|
445 |
# Run the application
|
446 |
if __name__ == "__main__":
|
|
|
1 |
+
from fastapi import FastAPI, UploadFile, File, Form, HTTPException, status, Request
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
from fastapi.responses import JSONResponse, HTMLResponse
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from fastapi.encoders import jsonable_encoder
|
5 |
+
from fastapi.staticfiles import StaticFiles
|
6 |
+
from fastapi.templating import Jinja2Templates
|
7 |
from transformers import pipeline, Pipeline
|
8 |
+
from typing import Dict, Optional, Tuple, List
|
9 |
from pydantic import BaseModel, constr, validator
|
10 |
import io
|
11 |
import fitz # PyMuPDF
|
|
|
20 |
from datetime import datetime
|
21 |
from pathlib import Path
|
22 |
import re
|
23 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
# Configure logging
|
26 |
logging.basicConfig(level=logging.INFO)
|
27 |
logger = logging.getLogger(__name__)
|
28 |
|
29 |
+
# Initialize FastAPI app
|
30 |
app = FastAPI(
|
31 |
title="AI Document Analysis API",
|
32 |
description="Advanced document processing with multilingual support",
|
|
|
35 |
redoc_url="/redoc"
|
36 |
)
|
37 |
|
38 |
+
# Configure CORS
|
39 |
app.add_middleware(
|
40 |
CORSMiddleware,
|
41 |
allow_origins=["*"],
|
|
|
44 |
allow_headers=["*"],
|
45 |
)
|
46 |
|
47 |
+
# Set up templates
|
48 |
+
templates = Jinja2Templates(directory=str(Path(__file__).parent / "templates"))
|
49 |
+
|
50 |
+
# Serve static files
|
51 |
+
app.mount("/static", StaticFiles(directory="static"), name="static")
|
52 |
+
|
53 |
# Constants
|
54 |
MAX_FILE_SIZE = 10 * 1024 * 1024 # 10MB
|
55 |
MAX_TEXT_LENGTH = 2000
|
|
|
119 |
|
120 |
# Exception Handler
|
121 |
@app.exception_handler(HTTPException)
|
122 |
+
async def http_exception_handler(request: Request, exc: HTTPException):
|
123 |
error_response = ErrorResponse(
|
124 |
error=exc.detail,
|
125 |
status_code=exc.status_code,
|
|
|
206 |
text = re.sub(r'\s+', ' ', text).strip()
|
207 |
return text[:MAX_TEXT_LENGTH] if len(text) > MAX_TEXT_LENGTH else text
|
208 |
|
209 |
+
def chunk_text(text: str, chunk_size: int = 1000) -> List[str]:
|
210 |
+
"""Split text into chunks for processing."""
|
211 |
+
return [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)]
|
212 |
+
|
213 |
+
# API Endpoints
|
214 |
+
@app.get("/", response_class=HTMLResponse)
|
215 |
+
async def home(request: Request):
|
216 |
+
return templates.TemplateResponse("index.html", {"request": request})
|
217 |
+
|
218 |
+
@app.get("/health")
|
219 |
+
async def health_check():
|
220 |
+
return {"status": "healthy", "timestamp": datetime.now().isoformat()}
|
221 |
+
|
222 |
+
@app.post("/summarize")
|
223 |
+
async def summarize_document(file: UploadFile = File(...)):
|
224 |
+
try:
|
225 |
+
file_ext, content = await validate_and_read_file(file)
|
226 |
+
text = preprocess_text(extract_text(content, file_ext))
|
227 |
+
|
228 |
+
if not text.strip():
|
229 |
+
raise HTTPException(
|
230 |
+
status_code=status.HTTP_400_BAD_REQUEST,
|
231 |
+
detail="No extractable text found in document"
|
232 |
+
)
|
233 |
+
|
234 |
+
model_name = MODEL_MAPPING.get("en", {}).get("summarization", "facebook/bart-large-cnn")
|
235 |
+
summarizer = get_model(model_name, "summarization")
|
236 |
+
|
237 |
+
chunks = chunk_text(text)
|
238 |
+
summaries = []
|
239 |
+
for chunk in chunks:
|
240 |
+
summary = summarizer(chunk, max_length=150, min_length=50, do_sample=False)[0]["summary_text"]
|
241 |
+
summaries.append(summary)
|
242 |
+
|
243 |
+
return {
|
244 |
+
"success": True,
|
245 |
+
"summary": " ".join(summaries),
|
246 |
+
"language": "en",
|
247 |
+
"processed_chunks": len(chunks)
|
248 |
+
}
|
249 |
+
except HTTPException:
|
250 |
+
raise
|
251 |
+
except Exception as e:
|
252 |
+
logger.error(f"Summarization failed: {str(e)}")
|
253 |
+
raise HTTPException(
|
254 |
+
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
255 |
+
detail="Document summarization failed",
|
256 |
+
details={"error": str(e)}
|
257 |
+
)
|
258 |
+
|
259 |
@app.post("/qa")
|
260 |
async def question_answering(
|
261 |
file: UploadFile = File(...),
|
262 |
question: str = Form(...),
|
263 |
language: str = Form(DEFAULT_LANGUAGE)
|
264 |
+
):
|
265 |
try:
|
|
|
266 |
file_ext, content = await validate_and_read_file(file)
|
267 |
text = preprocess_text(extract_text(content, file_ext))
|
268 |
|
269 |
+
# Theme detection
|
270 |
theme_keywords = {
|
271 |
"fr": ["thème", "sujet principal", "quoi le sujet"],
|
272 |
"en": ["theme", "main topic", "what is about"]
|
|
|
278 |
)
|
279 |
|
280 |
if is_theme_question:
|
281 |
+
model_name = MODEL_MAPPING.get(language, {}).get("summarization")
|
282 |
+
if not model_name:
|
283 |
+
model_name = MODEL_MAPPING["default"].get("summarization")
|
284 |
+
|
285 |
+
generator = get_model(model_name, "text-generation")
|
286 |
theme_prompt = (
|
287 |
+
"Extract the main theme of this text in 1-2 sentences. "
|
288 |
+
"Respond as if explaining to a beginner. "
|
289 |
+
"Text: {text}"
|
290 |
)
|
291 |
|
|
|
|
|
292 |
response = generator(
|
293 |
theme_prompt.format(text=text[:2000]),
|
294 |
max_length=200,
|
|
|
296 |
do_sample=False
|
297 |
)
|
298 |
|
|
|
299 |
theme = response[0]["generated_text"].split(":")[-1].strip()
|
300 |
+
theme = re.sub(r"^(Le|La)\s+", "", theme)
|
301 |
|
302 |
+
return {
|
303 |
"question": question,
|
304 |
+
"answer": f"The document mainly discusses: {theme}",
|
305 |
+
"confidence": 0.95,
|
306 |
"language": language,
|
307 |
"processing_method": "theme_analysis",
|
308 |
"success": True
|
309 |
+
}
|
|
|
|
|
|
|
|
|
310 |
|
311 |
# Standard QA processing
|
312 |
+
model_name = MODEL_MAPPING.get(language, {}).get("qa")
|
313 |
+
if not model_name:
|
314 |
+
model_name = MODEL_MAPPING["default"].get("qa")
|
315 |
|
316 |
+
qa_model = get_model(model_name, "question-answering")
|
317 |
+
result = qa_model(question=question, context=text)
|
318 |
+
|
319 |
+
if result["score"] < 0.1:
|
320 |
+
return {
|
321 |
+
"question": question,
|
322 |
"answer": "No clear answer found in the document" if language == "en" else "Aucune réponse claire trouvée dans le document",
|
323 |
"confidence": result["score"],
|
324 |
"language": language,
|
325 |
"warning": "low_confidence",
|
326 |
"success": True
|
327 |
+
}
|
328 |
|
329 |
+
return {
|
330 |
+
"question": question,
|
331 |
"answer": result["answer"],
|
332 |
"confidence": result["score"],
|
333 |
"language": language,
|
334 |
"success": True
|
335 |
+
}
|
336 |
|
337 |
except HTTPException:
|
338 |
raise
|
|
|
344 |
details={"error": str(e)}
|
345 |
)
|
346 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
347 |
@app.post("/api/caption")
|
348 |
async def caption_image(file: UploadFile = File(...)):
|
349 |
try:
|
350 |
+
file_ext, content = await validate_and_read_file(file)
|
351 |
+
if file_ext not in {"jpg", "jpeg", "png"}:
|
352 |
+
raise HTTPException(
|
353 |
+
status_code=status.HTTP_400_BAD_REQUEST,
|
354 |
+
detail="Only image files are supported for captioning"
|
355 |
+
)
|
356 |
+
|
357 |
+
image = Image.open(io.BytesIO(content)).convert("RGB")
|
358 |
+
captioner = get_model(MODEL_MAPPING["default"]["image_captioning"], "image-to-text")
|
359 |
+
caption = captioner(image)[0]['generated_text']
|
360 |
+
|
361 |
+
return {
|
362 |
+
"success": True,
|
363 |
+
"caption": caption,
|
364 |
+
"file_type": file_ext
|
365 |
+
}
|
366 |
+
except HTTPException:
|
367 |
+
raise
|
368 |
except Exception as e:
|
369 |
+
logger.error(f"Image captioning failed: {str(e)}")
|
370 |
+
raise HTTPException(
|
371 |
+
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
372 |
+
detail="Image captioning failed",
|
373 |
+
details={"error": str(e)}
|
374 |
+
)
|
375 |
|
376 |
@app.post("/translate")
|
377 |
async def translate_text(
|
|
|
380 |
src_lang: str = Form("eng_Latn")
|
381 |
):
|
382 |
try:
|
383 |
+
translator = get_model(MODEL_MAPPING["default"]["multilingual_translation"], "translation")
|
384 |
+
translated = translator(text, src_lang=src_lang, tgt_lang=target_lang)
|
385 |
+
|
386 |
+
return {
|
387 |
+
"success": True,
|
388 |
+
"translated_text": translated[0]["translation_text"],
|
389 |
+
"source_language": src_lang,
|
390 |
+
"target_language": target_lang
|
391 |
+
}
|
392 |
except Exception as e:
|
393 |
+
logger.error(f"Translation failed: {str(e)}")
|
394 |
+
raise HTTPException(
|
395 |
+
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
396 |
+
detail="Text translation failed",
|
397 |
+
details={"error": str(e)}
|
398 |
+
)
|
399 |
|
400 |
# Run the application
|
401 |
if __name__ == "__main__":
|