asm-app / main.py
chenguittiMaroua's picture
Update main.py
5740b8a verified
raw
history blame
38 kB
from fastapi import FastAPI, UploadFile, File, Form, HTTPException, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from transformers import pipeline
from typing import Tuple, Optional
import io
import fitz # PyMuPDF
from PIL import Image
import pandas as pd
import uvicorn
from docx import Document
from pptx import Presentation
import pytesseract
import logging
import re
from slowapi import Limiter
from slowapi.util import get_remote_address
from slowapi.errors import RateLimitExceeded
from slowapi.middleware import SlowAPIMiddleware
import matplotlib.pyplot as plt
import seaborn as sns
import tempfile
import base64
from io import BytesIO
from pydantic import BaseModel
import traceback
import ast
from fastapi.responses import HTMLResponse
from fastapi import Request
from pathlib import Path
from fastapi.staticfiles import StaticFiles
import numpy as np # Add this import
import pandas as pd
from io import BytesIO
# main.py
# Standard library imports
import io
import re
import logging
import tempfile
import base64
import warnings
from typing import Tuple, Optional
from pathlib import Path
# Third-party imports
from fastapi import FastAPI, UploadFile, File, Form, HTTPException, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, HTMLResponse
from transformers import pipeline
import fitz # PyMuPDF
from PIL import Image
import pandas as pd
import uvicorn
from docx import Document
from pptx import Presentation
import pytesseract
from slowapi import Limiter
from slowapi.util import get_remote_address
from slowapi.errors import RateLimitExceeded
from slowapi.middleware import SlowAPIMiddleware
import matplotlib.pyplot as plt
import seaborn as sns
from pydantic import BaseModel
import traceback
import ast
from openpyxl import Workbook
# Suppress openpyxl warnings
warnings.filterwarnings("ignore", category=UserWarning, module="openpyxl")
# Rest of your code (app setup, routes, etc.)...
# Initialize rate limiter
limiter = Limiter(key_func=get_remote_address)
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI()
# Serve static files (frontend)
app.mount("/static", StaticFiles(directory="static"), name="static")
@app.get("/", response_class=HTMLResponse)
def home ():
with open("static/indexAI.html","r") as file :
return file.read()
# Apply rate limiting middleware
app.state.limiter = limiter
app.add_middleware(SlowAPIMiddleware)
# CORS Configuration
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_methods=["*"],
allow_headers=["*"],
)
# Constants
MAX_FILE_SIZE = 10 * 1024 * 1024 # 10MB
SUPPORTED_FILE_TYPES = {
"docx", "xlsx", "pptx", "pdf", "jpg", "jpeg", "png"
}
# Model caching
summarizer = None
qa_model = None
image_captioner = None
def get_summarizer():
global summarizer
if summarizer is None:
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
return summarizer
def get_qa_model():
global qa_model
if qa_model is None:
qa_model = pipeline("question-answering", model="deepset/roberta-base-squad2")
return qa_model
def get_image_captioner():
global image_captioner
if image_captioner is None:
image_captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
return image_captioner
async def process_uploaded_file(file: UploadFile) -> Tuple[str, bytes]:
"""Validate and process uploaded file with special handling for each type"""
if not file.filename:
raise HTTPException(400, "No filename provided")
file_ext = file.filename.split('.')[-1].lower()
if file_ext not in SUPPORTED_FILE_TYPES:
raise HTTPException(400, f"Unsupported file type. Supported: {', '.join(SUPPORTED_FILE_TYPES)}")
content = await file.read()
if len(content) > MAX_FILE_SIZE:
raise HTTPException(413, f"File too large. Max size: {MAX_FILE_SIZE//1024//1024}MB")
# Special validation for PDFs
if file_ext == "pdf":
try:
with fitz.open(stream=content, filetype="pdf") as doc:
if doc.is_encrypted:
if not doc.authenticate(""):
raise ValueError("Encrypted PDF - cannot extract text")
if len(doc) > 50:
raise ValueError("PDF too large (max 50 pages)")
except Exception as e:
logger.error(f"PDF validation failed: {str(e)}")
raise HTTPException(422, detail=f"Invalid PDF file: {str(e)}")
await file.seek(0) # Reset file pointer for processing
return file_ext, content
def extract_text(content: bytes, file_ext: str) -> str:
"""Extract text from various file formats with enhanced Excel support"""
try:
if file_ext == "docx":
doc = Document(io.BytesIO(content))
return "\n".join(para.text for para in doc.paragraphs if para.text.strip())
elif file_ext in {"xlsx", "xls"}:
# Improved Excel handling with better NaN and date support
df = pd.read_excel(
io.BytesIO(content),
sheet_name=None,
engine='openpyxl',
na_values=['', 'NA', 'N/A', 'NaN', 'null'],
keep_default_na=False,
parse_dates=True
)
all_text = []
for sheet_name, sheet_data in df.items():
sheet_text = []
# Convert all data to string and handle special types
for column in sheet_data.columns:
# Handle datetime columns
if pd.api.types.is_datetime64_any_dtype(sheet_data[column]):
sheet_data[column] = sheet_data[column].dt.strftime('%Y-%m-%d %H:%M:%S')
# Convert to string and clean
col_text = sheet_data[column].astype(str).replace(['nan', 'None', 'NaT'], '').tolist()
sheet_text.extend([x for x in col_text if x.strip()])
all_text.append(f"Sheet: {sheet_name}\n" + "\n".join(sheet_text))
return "\n\n".join(all_text)
elif file_ext == "pptx":
ppt = Presentation(io.BytesIO(content))
text = []
for slide in ppt.slides:
for shape in slide.shapes:
if hasattr(shape, "text") and shape.text.strip():
text.append(shape.text)
return "\n".join(text)
elif file_ext == "pdf":
pdf = fitz.open(stream=content, filetype="pdf")
return "\n".join(page.get_text("text") for page in pdf)
elif file_ext in {"jpg", "jpeg", "png"}:
# First try OCR
try:
image = Image.open(io.BytesIO(content))
text = pytesseract.image_to_string(image, config='--psm 6')
if text.strip():
return text
# If OCR fails, try image captioning
captioner = get_image_captioner()
result = captioner(image)
return result[0]['generated_text']
except Exception as img_e:
logger.error(f"Image processing failed: {str(img_e)}")
raise ValueError("Could not extract text or caption from image")
except Exception as e:
logger.error(f"Text extraction failed for {file_ext}: {str(e)}", exc_info=True)
raise HTTPException(422, f"Failed to extract text from {file_ext} file: {str(e)}")
# Visualization Models
class VisualizationRequest(BaseModel):
chart_type: str
x_column: Optional[str] = None
y_column: Optional[str] = None
hue_column: Optional[str] = None
title: Optional[str] = None
x_label: Optional[str] = None
y_label: Optional[str] = None
style: str = "seaborn-v0_8" # Updated default
filters: Optional[dict] = None
class NaturalLanguageRequest(BaseModel):
prompt: str
style: str = "seaborn-v0_8"
def validate_matplotlib_style(style: str) -> str:
"""Validate and return a valid matplotlib style"""
available_styles = plt.style.available
# Map legacy style names to current ones
style_mapping = {
'seaborn': 'seaborn-v0_8',
'seaborn-white': 'seaborn-v0_8-white',
'seaborn-dark': 'seaborn-v0_8-dark',
# Add other legacy mappings if needed
}
# Check if it's a legacy name we can map
if style in style_mapping:
return style_mapping[style]
# Check if it's a valid current style
if style in available_styles:
return style
logger.warning(f"Invalid style '{style}'. Available styles: {available_styles}")
return "seaborn-v0_8" # Default fallback to current seaborn style
def generate_visualization_code(df: pd.DataFrame, request: VisualizationRequest) -> str:
"""Generate Python code for visualization with enhanced NaN handling and type safety"""
# Validate style
valid_style = validate_matplotlib_style(request.style)
# Convert DataFrame to dict with proper NaN handling
df_dict = df.where(pd.notnull(df), None).to_dict(orient='list')
code_lines = [
"import matplotlib.pyplot as plt",
"import seaborn as sns",
"import pandas as pd",
"import numpy as np",
"",
"# Data preparation with NaN handling and type conversion",
f"raw_data = {df_dict}",
"df = pd.DataFrame(raw_data)",
"",
"# Automatic type conversion and cleaning",
"for col in df.columns:",
" # Convert strings that should be numeric",
" if pd.api.types.is_string_dtype(df[col]):",
" try:",
" df[col] = pd.to_numeric(df[col])",
" continue",
" except (ValueError, TypeError):",
" pass",
" ",
" # Convert string dates to datetime",
" try:",
" df[col] = pd.to_datetime(df[col])",
" continue",
" except (ValueError, TypeError):",
" pass",
" ",
" # Clean remaining None/NaN values",
" df[col] = df[col].where(pd.notnull(df[col]), None)",
]
# Apply filters if specified (with enhanced safety)
if request.filters:
filter_conditions = []
for column, condition in request.filters.items():
if isinstance(condition, dict):
if 'min' in condition and 'max' in condition:
filter_conditions.append(
f"(pd.notna(df['{column}']) & "
f"(df['{column}'] >= {condition['min']}) & "
f"(df['{column}'] <= {condition['max']})"
)
elif 'values' in condition:
values = ', '.join([f"'{v}'" if isinstance(v, str) else str(v) for v in condition['values']])
filter_conditions.append(
f"(pd.notna(df['{column}'])) & "
f"(df['{column}'].isin([{values}]))"
)
else:
filter_conditions.append(
f"(pd.notna(df['{column}'])) & "
f"(df['{column}'] == {repr(condition)})"
)
if filter_conditions:
code_lines.extend([
"",
"# Apply filters with NaN checking",
f"df = df[{' & '.join(filter_conditions)}].copy()"
])
code_lines.extend([
"",
"# Visualization setup",
f"plt.style.use('{valid_style}')",
f"plt.figure(figsize=(10, 6))"
])
# Chart type specific code (unchanged from your original)
if request.chart_type == "line":
if request.hue_column:
code_lines.append(f"sns.lineplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
else:
code_lines.append(f"plt.plot(df['{request.x_column}'], df['{request.y_column}'])")
elif request.chart_type == "bar":
if request.hue_column:
code_lines.append(f"sns.barplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
else:
code_lines.append(f"plt.bar(df['{request.x_column}'], df['{request.y_column}'])")
elif request.chart_type == "scatter":
if request.hue_column:
code_lines.append(f"sns.scatterplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
else:
code_lines.append(f"plt.scatter(df['{request.x_column}'], df['{request.y_column}'])")
elif request.chart_type == "histogram":
code_lines.append(f"plt.hist(df['{request.x_column}'].dropna(), bins=20)") # Added dropna()
elif request.chart_type == "boxplot":
if request.hue_column:
code_lines.append(f"sns.boxplot(data=df.dropna(), x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')") # Added dropna()
else:
code_lines.append(f"sns.boxplot(data=df.dropna(), x='{request.x_column}', y='{request.y_column}')") # Added dropna()
elif request.chart_type == "heatmap":
code_lines.append("numeric_df = df.select_dtypes(include=[np.number])") # Filter numeric only
code_lines.append("corr = numeric_df.corr()")
code_lines.append("sns.heatmap(corr, annot=True, cmap='coolwarm')")
else:
raise ValueError(f"Unsupported chart type: {request.chart_type}")
# Add labels and title
if request.title:
code_lines.append(f"plt.title('{request.title}')")
if request.x_label:
code_lines.append(f"plt.xlabel('{request.x_label}')")
if request.y_label:
code_lines.append(f"plt.ylabel('{request.y_label}')")
code_lines.extend([
"plt.tight_layout()",
"plt.show()"
])
return "\n".join(code_lines)
# Determine chart type
chart_type = "bar"
if "line" in prompt:
chart_type = "line"
elif "scatter" in prompt:
chart_type = "scatter"
elif "histogram" in prompt:
chart_type = "histogram"
elif "box" in prompt:
chart_type = "boxplot"
elif "heatmap" in prompt or "correlation" in prompt:
chart_type = "heatmap"
# Try to detect columns
x_col = None
y_col = None
hue_col = None
for col in df_columns:
if col.lower() in prompt:
if not x_col:
x_col = col
elif not y_col:
y_col = col
else:
hue_col = col
# Default to first columns if not detected
if not x_col and len(df_columns) > 0:
x_col = df_columns[0]
if not y_col and len(df_columns) > 1:
y_col = df_columns[1]
return VisualizationRequest(
chart_type=chart_type,
x_column=x_col,
y_column=y_col,
hue_column=hue_col,
title="Generated from: " + prompt[:50] + ("..." if len(prompt) > 50 else ""),
style="seaborn-v0_8" # Updated default
)
from typing import Optional
def interpret_natural_language(prompt: str, df_columns: list) -> Optional[VisualizationRequest]:
"""Fully dynamic prompt interpretation that works with any Excel columns"""
if not prompt or not df_columns:
return None
prompt = prompt.lower().strip()
col_names = [col.lower() for col in df_columns]
# Initialize with defaults
chart_type = "bar"
x_col = None
y_col = None
hue_col = None
# Dynamic chart type detection
if any(word in prompt for word in ["line", "trend", "over time"]):
chart_type = "line"
elif any(word in prompt for word in ["scatter", "relationship", "correlat"]):
chart_type = "scatter"
elif any(word in prompt for word in ["histogram", "distribut", "frequenc"]):
chart_type = "histogram"
elif any(word in prompt for word in ["box", "quartile"]):
chart_type = "boxplot"
elif any(word in prompt for word in ["heatmap", "matrix"]):
chart_type = "heatmap"
# Dynamic column assignment - looks for column names mentioned in prompt
for col, col_lower in zip(df_columns, col_names):
if col_lower in prompt:
# First mentioned column becomes x-axis
if not x_col:
x_col = col
# Second mentioned becomes y-axis (except for histograms)
elif not y_col and chart_type != "histogram":
y_col = col
# Third mentioned could be hue
elif not hue_col and chart_type in ["bar", "scatter", "line"]:
hue_col = col
# Smart defaults when columns aren't specified
if not x_col and df_columns:
x_col = df_columns[0] # First column as default x-axis
if not y_col and len(df_columns) > 1 and chart_type != "histogram":
y_col = df_columns[1] # Second column as default y-axis
# Special handling for specific chart types
if chart_type == "heatmap":
return VisualizationRequest(
chart_type="heatmap",
title=f"Heatmap: {prompt[:30]}...",
style="seaborn-v0_8"
)
if chart_type == "histogram" and y_col:
# Histograms only need x-axis
y_col = None
return VisualizationRequest(
chart_type=chart_type,
x_column=x_col,
y_column=y_col,
hue_column=hue_col,
title=f"{chart_type.title()} of {prompt[:30]}...",
style="seaborn-v0_8"
)
# ===== DYNAMIC VISUALIZATION FUNCTIONS =====
def read_any_excel(content: bytes) -> pd.DataFrame:
"""Read any Excel file with automatic type detection"""
try:
# First read without parsing dates to detect datetime columns
df = pd.read_excel(
io.BytesIO(content),
engine='openpyxl',
dtype=object, # Read everything as object initially
na_values=['', '#N/A', '#VALUE!', '#REF!', 'NULL', 'NA', 'N/A']
)
# Convert each column to best possible type
for col in df.columns:
# First try numeric conversion
try:
df[col] = pd.to_numeric(df[col])
continue
except (ValueError, TypeError):
pass
# Then try datetime with explicit format
try:
df[col] = pd.to_datetime(df[col], format='mixed')
continue
except (ValueError, TypeError):
pass
# Finally clean strings
df[col] = df[col].astype(str).str.strip()
df[col] = df[col].replace(['nan', 'None', 'NaT', ''], None)
return df
except Exception as e:
logger.error(f"Excel reading failed: {str(e)}")
raise HTTPException(422, f"Could not process Excel file: {str(e)}")
except Exception as e:
logger.error(f"Excel reading failed: {str(e)}")
raise HTTPException(422, f"Could not process Excel file: {str(e)}")
def clean_and_convert_data(df: pd.DataFrame) -> pd.DataFrame:
"""
Clean and convert data types in a DataFrame with proper error handling
"""
df_clean = df.copy()
for col in df_clean.columns:
# Try numeric conversion with proper error handling
try:
numeric_vals = pd.to_numeric(df_clean[col])
df_clean[col] = numeric_vals
continue # Skip to next column if successful
except (ValueError, TypeError):
pass
# Try datetime conversion with format inference
try:
# First try ISO format
datetime_vals = pd.to_datetime(df_clean[col], format='ISO8601')
df_clean[col] = datetime_vals
continue
except (ValueError, TypeError):
try:
# Fallback to mixed format
datetime_vals = pd.to_datetime(df_clean[col], format='mixed')
df_clean[col] = datetime_vals
continue
except (ValueError, TypeError):
pass
# Clean string columns
if df_clean[col].dtype == object:
df_clean[col] = (
df_clean[col]
.astype(str)
.str.strip()
.replace(['nan', 'None', 'NaT', ''], pd.NA)
)
return df_clean
def is_date_like(s: str) -> bool:
"""Helper to detect date-like strings"""
date_patterns = [
r'\d{4}-\d{2}-\d{2}', # YYYY-MM-DD
r'\d{2}/\d{2}/\d{4}', # MM/DD/YYYY
r'\d{4}/\d{2}/\d{2}', # YYYY/MM/DD
r'\d{2}-\d{2}-\d{4}', # MM-DD-YYYY
r'\d{1,2}[./-]\d{1,2}[./-]\d{2,4}', # Various separators
r'\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}' # With time
]
return any(re.match(p, s) for p in date_patterns)
def generate_smart_prompt(df: pd.DataFrame) -> str:
"""Generate a sensible default prompt based on data"""
numeric_cols = df.select_dtypes(include=np.number).columns.tolist()
date_cols = df.select_dtypes(include=['datetime']).columns.tolist()
cat_cols = df.select_dtypes(include=['object', 'category']).columns.tolist()
if date_cols and numeric_cols:
return f"Show line chart of {numeric_cols[0]} over time"
elif len(numeric_cols) >= 2 and cat_cols:
return f"Compare {numeric_cols[0]} and {numeric_cols[1]} by {cat_cols[0]}"
elif numeric_cols:
return f"Show distribution of {numeric_cols[0]}"
else:
return "Show data overview"
def generate_dynamic_visualization_code(df: pd.DataFrame, request: VisualizationRequest) -> str:
"""Generate visualization code that adapts to any DataFrame structure"""
# Validate style
valid_style = validate_matplotlib_style(request.style)
# Prepare data with type preservation
data_dict = {}
type_hints = {}
for col in df.columns:
if pd.api.types.is_datetime64_any_dtype(df[col]):
data_dict[col] = df[col].dt.strftime('%Y-%m-%d %H:%M:%S').tolist()
type_hints[col] = 'datetime'
elif pd.api.types.is_numeric_dtype(df[col]):
data_dict[col] = df[col].tolist()
type_hints[col] = 'numeric'
else:
data_dict[col] = df[col].astype(str).tolist()
type_hints[col] = 'string'
code_lines = [
"import matplotlib.pyplot as plt",
"import seaborn as sns",
"import pandas as pd",
"import numpy as np",
"from datetime import datetime",
"",
"# Data reconstruction with type handling",
f"raw_data = {data_dict}",
"df = pd.DataFrame(raw_data)",
"",
"# Type conversion based on detected types"
]
# Add type conversion for each column
for col, col_type in type_hints.items():
if col_type == 'datetime':
code_lines.append(
f"df['{col}'] = pd.to_datetime(df['{col}'], format='%Y-%m-%d %H:%M:%S', errors='ignore')"
)
elif col_type == 'numeric':
code_lines.append(
f"df['{col}'] = pd.to_numeric(df['{col}'], errors='ignore')"
)
code_lines.extend([
"",
"# Clean missing values",
"df = df.replace([None, np.nan, 'nan', 'None', 'NaT', ''], None)",
"df = df.where(pd.notnull(df), None)",
"",
"# Visualization setup",
f"plt.style.use('{valid_style}')",
f"plt.figure(figsize=(10, 6))"
])
# Chart type specific code (from your existing function)
if request.chart_type == "line":
if request.hue_column:
code_lines.append(f"sns.lineplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
else:
code_lines.append(f"plt.plot(df['{request.x_column}'], df['{request.y_column}'])")
elif request.chart_type == "bar":
if request.hue_column:
code_lines.append(f"sns.barplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
else:
code_lines.append(f"plt.bar(df['{request.x_column}'], df['{request.y_column}'])")
elif request.chart_type == "scatter":
if request.hue_column:
code_lines.append(f"sns.scatterplot(data=df, x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
else:
code_lines.append(f"plt.scatter(df['{request.x_column}'], df['{request.y_column}'])")
elif request.chart_type == "histogram":
code_lines.append(f"plt.hist(df['{request.x_column}'].dropna(), bins=20)")
elif request.chart_type == "boxplot":
if request.hue_column:
code_lines.append(f"sns.boxplot(data=df.dropna(), x='{request.x_column}', y='{request.y_column}', hue='{request.hue_column}')")
else:
code_lines.append(f"sns.boxplot(data=df.dropna(), x='{request.x_column}', y='{request.y_column}')")
elif request.chart_type == "heatmap":
code_lines.append("numeric_df = df.select_dtypes(include=[np.number])")
code_lines.append("corr = numeric_df.corr()")
code_lines.append("sns.heatmap(corr, annot=True, cmap='coolwarm')")
else:
raise ValueError(f"Unsupported chart type: {request.chart_type}")
# Add labels and title
if request.title:
code_lines.append(f"plt.title('{request.title}')")
if request.x_label:
code_lines.append(f"plt.xlabel('{request.x_label}')")
if request.y_label:
code_lines.append(f"plt.ylabel('{request.y_label}')")
code_lines.extend([
"plt.tight_layout()",
"plt.show()"
])
return "\n".join(code_lines)
@app.post("/summarize")
@limiter.limit("5/minute")
async def summarize_document(request: Request, file: UploadFile = File(...)):
try:
file_ext, content = await process_uploaded_file(file)
text = extract_text(content, file_ext)
if not text.strip():
raise HTTPException(400, "No extractable text found")
# Clean and chunk text
text = re.sub(r'\s+', ' ', text).strip()
chunks = [text[i:i+1000] for i in range(0, len(text), 1000)]
# Summarize each chunk
summarizer = get_summarizer()
summaries = []
for chunk in chunks:
summary = summarizer(chunk, max_length=150, min_length=50, do_sample=False)[0]["summary_text"]
summaries.append(summary)
return {"summary": " ".join(summaries)}
except HTTPException:
raise
except Exception as e:
logger.error(f"Summarization failed: {str(e)}")
raise HTTPException(500, "Document summarization failed")
@app.post("/qa")
@limiter.limit("5/minute")
async def question_answering(
request: Request,
file: UploadFile = File(...),
question: str = Form(...),
language: str = Form("fr")
):
try:
file_ext, content = await process_uploaded_file(file)
text = extract_text(content, file_ext)
if not text.strip():
raise HTTPException(400, "No extractable text found")
# Clean and truncate text
text = re.sub(r'\s+', ' ', text).strip()[:5000]
# Theme detection
theme_keywords = ["thème", "sujet principal", "quoi le sujet", "theme", "main topic"]
if any(kw in question.lower() for kw in theme_keywords):
try:
summarizer = get_summarizer()
summary_output = summarizer(
text,
max_length=min(100, len(text)//4),
min_length=30,
do_sample=False,
truncation=True
)
theme = summary_output[0].get("summary_text", text[:200] + "...")
return {
"question": question,
"answer": f"Le document traite principalement de : {theme}",
"confidence": 0.95,
"language": language
}
except Exception:
theme = text[:200] + ("..." if len(text) > 200 else "")
return {
"question": question,
"answer": f"D'après le document : {theme}",
"confidence": 0.7,
"language": language,
"warning": "theme_summary_fallback"
}
# Standard QA
qa = get_qa_model()
result = qa(question=question, context=text[:3000])
return {
"question": question,
"answer": result["answer"],
"confidence": result["score"],
"language": language
}
except HTTPException:
raise
except Exception as e:
logger.error(f"QA processing failed: {str(e)}")
raise HTTPException(500, detail=f"Analysis failed: {str(e)}")
# [Previous imports remain exactly the same...]
@app.post("/visualize/natural")
async def natural_language_visualization(
file: UploadFile = File(...),
prompt: str = Form(""),
style: str = Form("seaborn-v0_8")
):
try:
# Read and validate file
content = await file.read()
try:
df = pd.read_excel(BytesIO(content))
except Exception as e:
raise HTTPException(400, detail=f"Invalid Excel file: {str(e)}")
if df.empty:
raise HTTPException(400, detail="The uploaded Excel file is empty")
# Clean and convert data types
for col in df.columns:
# Try numeric conversion first
df[col] = pd.to_numeric(df[col], errors='ignore')
# Then try datetime
try:
df[col] = pd.to_datetime(df[col], errors='ignore')
except:
pass
# Finally clean strings
df[col] = df[col].astype(str).str.strip().replace('nan', np.nan)
# Generate visualization request
vis_request = interpret_natural_language(prompt, df.columns.tolist())
if not vis_request:
raise HTTPException(400, "Could not interpret visualization request")
# Create visualization
plt.style.use(style)
fig, ax = plt.subplots(figsize=(10, 6))
try:
if vis_request.chart_type == "heatmap":
numeric_df = df.select_dtypes(include=['number'])
if numeric_df.empty:
raise ValueError("No numeric columns for heatmap")
sns.heatmap(numeric_df.corr(), annot=True, ax=ax)
else:
# Ensure numeric data for plotting
plot_data = df.copy()
if vis_request.x_column:
plot_data[vis_request.x_column] = pd.to_numeric(
plot_data[vis_request.x_column],
errors='coerce'
)
if vis_request.y_column:
plot_data[vis_request.y_column] = pd.to_numeric(
plot_data[vis_request.y_column],
errors='coerce'
)
# Remove rows with missing numeric data
plot_data = plot_data.dropna()
if vis_request.chart_type == "line":
sns.lineplot(
data=plot_data,
x=vis_request.x_column,
y=vis_request.y_column,
hue=vis_request.hue_column,
ax=ax
)
elif vis_request.chart_type == "bar":
sns.barplot(
data=plot_data,
x=vis_request.x_column,
y=vis_request.y_column,
hue=vis_request.hue_column,
ax=ax
)
elif vis_request.chart_type == "scatter":
sns.scatterplot(
data=plot_data,
x=vis_request.x_column,
y=vis_request.y_column,
hue=vis_request.hue_column,
ax=ax
)
# Add other chart types as needed...
ax.set_title(vis_request.title)
buf = BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight')
plt.close(fig)
buf.seek(0)
# Generate the visualization code (you'll need to implement this)
generated_code = generate_visualization_code(df, vis_request)
return {
"status": "success",
"image": base64.b64encode(buf.read()).decode('utf-8'),
"chart_type": vis_request.chart_type,
"columns": list(df.columns),
"x_column": vis_request.x_column,
"y_column": vis_request.y_column,
"hue_column": vis_request.hue_column,
"code": generated_code # Added comma that was missing
}
except Exception as e:
raise HTTPException(400, detail=f"Plotting error: {str(e)}")
except HTTPException:
raise
except Exception as e:
logger.error(f"Visualization error: {str(e)}", exc_info=True)
raise HTTPException(500, detail=f"Server error: {str(e)}")
@app.get("/visualize/styles")
@limiter.limit("10/minute")
async def list_available_styles(request: Request):
"""List all available matplotlib styles"""
return {"available_styles": plt.style.available}
@app.post("/get_columns")
@limiter.limit("10/minute")
async def get_excel_columns(
request: Request,
file: UploadFile = File(...)
):
try:
file_ext, content = await process_uploaded_file(file)
if file_ext not in {"xlsx", "xls"}:
raise HTTPException(400, "Only Excel files are supported")
df = pd.read_excel(io.BytesIO(content))
return {
"columns": list(df.columns),
"sample_data": df.head().to_dict(orient='records'),
"statistics": df.describe().to_dict() if len(df.select_dtypes(include=['number']).columns) > 0 else None
}
except Exception as e:
logger.error(f"Column extraction failed: {str(e)}")
raise HTTPException(500, detail="Failed to extract columns from Excel file")
@app.exception_handler(RateLimitExceeded)
async def rate_limit_exceeded_handler(request: Request, exc: RateLimitExceeded):
return JSONResponse(
status_code=429,
content={"detail": "Too many requests. Please try again later."}
)
import gradio as gr
# Gradio interface for visualization
def gradio_visualize(file, prompt, style="seaborn-v0_8"):
# Call your existing FastAPI endpoint
with open(file.name, "rb") as f:
response = client.post(
"/visualize/natural",
files={"file": f},
data={"prompt": prompt, "style": style}
)
result = response.json()
# Return both image and code
return (
result["image"], # Base64 image
f"```python\n{result['code']}\n```" # Code with Markdown formatting
)
# Create Gradio interface
visualization_interface = gr.Interface(
fn=gradio_visualize,
inputs=[
gr.File(label="Upload Excel File", type="filepath"),
gr.Textbox(label="Visualization Prompt", placeholder="e.g., 'Show sales by region'"),
gr.Dropdown(label="Style", choices=plt.style.available, value="seaborn-v0_8")
],
outputs=[
gr.Image(label="Generated Visualization"), # Auto-handles base64
gr.Markdown(label="Generated Code") # Renders code with syntax highlighting
],
title="📊 Data Visualizer",
description="Upload an Excel file and describe the visualization you want"
)
# Mount Gradio to your FastAPI app
app = gr.mount_gradio_app(app, visualization_interface, path="/gradio")
# ===== ADD THIS AT THE BOTTOM OF main.py =====
if __name__ == "__main__":
import uvicorn
from fastapi.testclient import TestClient
from io import BytesIO
import base64
from PIL import Image
import matplotlib.pyplot as plt
# 1. Start the app (or connect to a running instance)
client = TestClient(app)
# 2. Test the visualization endpoint
test_file = "test.xlsx" # Replace with your test file
test_prompt = "Show me a bar chart of sales by region"
# 3. Send request to your own API
with open(test_file, "rb") as f:
response = client.post(
"/visualize/natural",
files={"file": ("test.xlsx", f, "application/vnd.ms-excel")},
data={"prompt": test_prompt}
)
# 4. Check if successful
if response.status_code == 200:
result = response.json()
print("Visualization generated successfully!")
# 5. Decode and display the image
image_data = result["image"].split(",")[1] # Remove header
image_bytes = base64.b64decode(image_data)
image = Image.open(BytesIO(image_bytes))
plt.imshow(image)
plt.axis("off")
plt.show()
else:
print(f"Error: {response.status_code}\n{response.text}")
# 6. Optional: Run the server (if not already running)
uvicorn.run(app, host="0.0.0.0", port=7860)