Spaces:
Running
on
Zero
Running
on
Zero
Update dataset_toolkits/encode_latent.py
Browse files- dataset_toolkits/encode_latent.py +127 -127
dataset_toolkits/encode_latent.py
CHANGED
@@ -1,127 +1,127 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
|
4 |
-
import copy
|
5 |
-
import json
|
6 |
-
import argparse
|
7 |
-
import torch
|
8 |
-
import numpy as np
|
9 |
-
import pandas as pd
|
10 |
-
from tqdm import tqdm
|
11 |
-
from easydict import EasyDict as edict
|
12 |
-
from concurrent.futures import ThreadPoolExecutor
|
13 |
-
from queue import Queue
|
14 |
-
|
15 |
-
import trellis.models as models
|
16 |
-
import trellis.modules.sparse as sp
|
17 |
-
|
18 |
-
|
19 |
-
torch.set_grad_enabled(False)
|
20 |
-
|
21 |
-
|
22 |
-
if __name__ == '__main__':
|
23 |
-
parser = argparse.ArgumentParser()
|
24 |
-
parser.add_argument('--output_dir', type=str, required=True,
|
25 |
-
help='Directory to save the metadata')
|
26 |
-
parser.add_argument('--filter_low_aesthetic_score', type=float, default=None,
|
27 |
-
help='Filter objects with aesthetic score lower than this value')
|
28 |
-
parser.add_argument('--feat_model', type=str, default='dinov2_vitl14_reg',
|
29 |
-
help='Feature model')
|
30 |
-
parser.add_argument('--enc_pretrained', type=str, default='
|
31 |
-
help='Pretrained encoder model')
|
32 |
-
parser.add_argument('--model_root', type=str, default='results',
|
33 |
-
help='Root directory of models')
|
34 |
-
parser.add_argument('--enc_model', type=str, default=None,
|
35 |
-
help='Encoder model. if specified, use this model instead of pretrained model')
|
36 |
-
parser.add_argument('--ckpt', type=str, default=None,
|
37 |
-
help='Checkpoint to load')
|
38 |
-
parser.add_argument('--instances', type=str, default=None,
|
39 |
-
help='Instances to process')
|
40 |
-
parser.add_argument('--rank', type=int, default=0)
|
41 |
-
parser.add_argument('--world_size', type=int, default=1)
|
42 |
-
opt = parser.parse_args()
|
43 |
-
opt = edict(vars(opt))
|
44 |
-
|
45 |
-
if opt.enc_model is None:
|
46 |
-
latent_name = f'{opt.feat_model}_{opt.enc_pretrained.split("/")[-1]}'
|
47 |
-
encoder = models.from_pretrained(opt.enc_pretrained).eval().cuda()
|
48 |
-
else:
|
49 |
-
latent_name = f'{opt.feat_model}_{opt.enc_model}_{opt.ckpt}'
|
50 |
-
cfg = edict(json.load(open(os.path.join(opt.model_root, opt.enc_model, 'config.json'), 'r')))
|
51 |
-
encoder = getattr(models, cfg.models.encoder.name)(**cfg.models.encoder.args).cuda()
|
52 |
-
ckpt_path = os.path.join(opt.model_root, opt.enc_model, 'ckpts', f'encoder_{opt.ckpt}.pt')
|
53 |
-
encoder.load_state_dict(torch.load(ckpt_path), strict=False)
|
54 |
-
encoder.eval()
|
55 |
-
print(f'Loaded model from {ckpt_path}')
|
56 |
-
|
57 |
-
os.makedirs(os.path.join(opt.output_dir, 'latents', latent_name), exist_ok=True)
|
58 |
-
|
59 |
-
# get file list
|
60 |
-
if os.path.exists(os.path.join(opt.output_dir, 'metadata.csv')):
|
61 |
-
metadata = pd.read_csv(os.path.join(opt.output_dir, 'metadata.csv'))
|
62 |
-
else:
|
63 |
-
raise ValueError('metadata.csv not found')
|
64 |
-
if opt.instances is not None:
|
65 |
-
with open(opt.instances, 'r') as f:
|
66 |
-
sha256s = [line.strip() for line in f]
|
67 |
-
metadata = metadata[metadata['sha256'].isin(sha256s)]
|
68 |
-
else:
|
69 |
-
if opt.filter_low_aesthetic_score is not None:
|
70 |
-
metadata = metadata[metadata['aesthetic_score'] >= opt.filter_low_aesthetic_score]
|
71 |
-
metadata = metadata[metadata[f'feature_{opt.feat_model}'] == True]
|
72 |
-
if f'latent_{latent_name}' in metadata.columns:
|
73 |
-
metadata = metadata[metadata[f'latent_{latent_name}'] == False]
|
74 |
-
|
75 |
-
start = len(metadata) * opt.rank // opt.world_size
|
76 |
-
end = len(metadata) * (opt.rank + 1) // opt.world_size
|
77 |
-
metadata = metadata[start:end]
|
78 |
-
records = []
|
79 |
-
|
80 |
-
# filter out objects that are already processed
|
81 |
-
sha256s = list(metadata['sha256'].values)
|
82 |
-
for sha256 in copy.copy(sha256s):
|
83 |
-
if os.path.exists(os.path.join(opt.output_dir, 'latents', latent_name, f'{sha256}.npz')):
|
84 |
-
records.append({'sha256': sha256, f'latent_{latent_name}': True})
|
85 |
-
sha256s.remove(sha256)
|
86 |
-
|
87 |
-
# encode latents
|
88 |
-
load_queue = Queue(maxsize=4)
|
89 |
-
try:
|
90 |
-
with ThreadPoolExecutor(max_workers=32) as loader_executor, \
|
91 |
-
ThreadPoolExecutor(max_workers=32) as saver_executor:
|
92 |
-
def loader(sha256):
|
93 |
-
try:
|
94 |
-
feats = np.load(os.path.join(opt.output_dir, 'features', opt.feat_model, f'{sha256}.npz'))
|
95 |
-
load_queue.put((sha256, feats))
|
96 |
-
except Exception as e:
|
97 |
-
print(f"Error loading features for {sha256}: {e}")
|
98 |
-
loader_executor.map(loader, sha256s)
|
99 |
-
|
100 |
-
def saver(sha256, pack):
|
101 |
-
save_path = os.path.join(opt.output_dir, 'latents', latent_name, f'{sha256}.npz')
|
102 |
-
np.savez_compressed(save_path, **pack)
|
103 |
-
records.append({'sha256': sha256, f'latent_{latent_name}': True})
|
104 |
-
|
105 |
-
for _ in tqdm(range(len(sha256s)), desc="Extracting latents"):
|
106 |
-
sha256, feats = load_queue.get()
|
107 |
-
feats = sp.SparseTensor(
|
108 |
-
feats = torch.from_numpy(feats['patchtokens']).float(),
|
109 |
-
coords = torch.cat([
|
110 |
-
torch.zeros(feats['patchtokens'].shape[0], 1).int(),
|
111 |
-
torch.from_numpy(feats['indices']).int(),
|
112 |
-
], dim=1),
|
113 |
-
).cuda()
|
114 |
-
latent = encoder(feats, sample_posterior=False)
|
115 |
-
assert torch.isfinite(latent.feats).all(), "Non-finite latent"
|
116 |
-
pack = {
|
117 |
-
'feats': latent.feats.cpu().numpy().astype(np.float32),
|
118 |
-
'coords': latent.coords[:, 1:].cpu().numpy().astype(np.uint8),
|
119 |
-
}
|
120 |
-
saver_executor.submit(saver, sha256, pack)
|
121 |
-
|
122 |
-
saver_executor.shutdown(wait=True)
|
123 |
-
except:
|
124 |
-
print("Error happened during processing.")
|
125 |
-
|
126 |
-
records = pd.DataFrame.from_records(records)
|
127 |
-
records.to_csv(os.path.join(opt.output_dir, f'latent_{latent_name}_{opt.rank}.csv'), index=False)
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
|
4 |
+
import copy
|
5 |
+
import json
|
6 |
+
import argparse
|
7 |
+
import torch
|
8 |
+
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
+
from tqdm import tqdm
|
11 |
+
from easydict import EasyDict as edict
|
12 |
+
from concurrent.futures import ThreadPoolExecutor
|
13 |
+
from queue import Queue
|
14 |
+
|
15 |
+
import trellis.models as models
|
16 |
+
import trellis.modules.sparse as sp
|
17 |
+
|
18 |
+
|
19 |
+
torch.set_grad_enabled(False)
|
20 |
+
|
21 |
+
|
22 |
+
if __name__ == '__main__':
|
23 |
+
parser = argparse.ArgumentParser()
|
24 |
+
parser.add_argument('--output_dir', type=str, required=True,
|
25 |
+
help='Directory to save the metadata')
|
26 |
+
parser.add_argument('--filter_low_aesthetic_score', type=float, default=None,
|
27 |
+
help='Filter objects with aesthetic score lower than this value')
|
28 |
+
parser.add_argument('--feat_model', type=str, default='dinov2_vitl14_reg',
|
29 |
+
help='Feature model')
|
30 |
+
parser.add_argument('--enc_pretrained', type=str, default='cavargas10/TRELLIS/ckpts/slat_enc_swin8_B_64l8_fp16',
|
31 |
+
help='Pretrained encoder model')
|
32 |
+
parser.add_argument('--model_root', type=str, default='results',
|
33 |
+
help='Root directory of models')
|
34 |
+
parser.add_argument('--enc_model', type=str, default=None,
|
35 |
+
help='Encoder model. if specified, use this model instead of pretrained model')
|
36 |
+
parser.add_argument('--ckpt', type=str, default=None,
|
37 |
+
help='Checkpoint to load')
|
38 |
+
parser.add_argument('--instances', type=str, default=None,
|
39 |
+
help='Instances to process')
|
40 |
+
parser.add_argument('--rank', type=int, default=0)
|
41 |
+
parser.add_argument('--world_size', type=int, default=1)
|
42 |
+
opt = parser.parse_args()
|
43 |
+
opt = edict(vars(opt))
|
44 |
+
|
45 |
+
if opt.enc_model is None:
|
46 |
+
latent_name = f'{opt.feat_model}_{opt.enc_pretrained.split("/")[-1]}'
|
47 |
+
encoder = models.from_pretrained(opt.enc_pretrained).eval().cuda()
|
48 |
+
else:
|
49 |
+
latent_name = f'{opt.feat_model}_{opt.enc_model}_{opt.ckpt}'
|
50 |
+
cfg = edict(json.load(open(os.path.join(opt.model_root, opt.enc_model, 'config.json'), 'r')))
|
51 |
+
encoder = getattr(models, cfg.models.encoder.name)(**cfg.models.encoder.args).cuda()
|
52 |
+
ckpt_path = os.path.join(opt.model_root, opt.enc_model, 'ckpts', f'encoder_{opt.ckpt}.pt')
|
53 |
+
encoder.load_state_dict(torch.load(ckpt_path), strict=False)
|
54 |
+
encoder.eval()
|
55 |
+
print(f'Loaded model from {ckpt_path}')
|
56 |
+
|
57 |
+
os.makedirs(os.path.join(opt.output_dir, 'latents', latent_name), exist_ok=True)
|
58 |
+
|
59 |
+
# get file list
|
60 |
+
if os.path.exists(os.path.join(opt.output_dir, 'metadata.csv')):
|
61 |
+
metadata = pd.read_csv(os.path.join(opt.output_dir, 'metadata.csv'))
|
62 |
+
else:
|
63 |
+
raise ValueError('metadata.csv not found')
|
64 |
+
if opt.instances is not None:
|
65 |
+
with open(opt.instances, 'r') as f:
|
66 |
+
sha256s = [line.strip() for line in f]
|
67 |
+
metadata = metadata[metadata['sha256'].isin(sha256s)]
|
68 |
+
else:
|
69 |
+
if opt.filter_low_aesthetic_score is not None:
|
70 |
+
metadata = metadata[metadata['aesthetic_score'] >= opt.filter_low_aesthetic_score]
|
71 |
+
metadata = metadata[metadata[f'feature_{opt.feat_model}'] == True]
|
72 |
+
if f'latent_{latent_name}' in metadata.columns:
|
73 |
+
metadata = metadata[metadata[f'latent_{latent_name}'] == False]
|
74 |
+
|
75 |
+
start = len(metadata) * opt.rank // opt.world_size
|
76 |
+
end = len(metadata) * (opt.rank + 1) // opt.world_size
|
77 |
+
metadata = metadata[start:end]
|
78 |
+
records = []
|
79 |
+
|
80 |
+
# filter out objects that are already processed
|
81 |
+
sha256s = list(metadata['sha256'].values)
|
82 |
+
for sha256 in copy.copy(sha256s):
|
83 |
+
if os.path.exists(os.path.join(opt.output_dir, 'latents', latent_name, f'{sha256}.npz')):
|
84 |
+
records.append({'sha256': sha256, f'latent_{latent_name}': True})
|
85 |
+
sha256s.remove(sha256)
|
86 |
+
|
87 |
+
# encode latents
|
88 |
+
load_queue = Queue(maxsize=4)
|
89 |
+
try:
|
90 |
+
with ThreadPoolExecutor(max_workers=32) as loader_executor, \
|
91 |
+
ThreadPoolExecutor(max_workers=32) as saver_executor:
|
92 |
+
def loader(sha256):
|
93 |
+
try:
|
94 |
+
feats = np.load(os.path.join(opt.output_dir, 'features', opt.feat_model, f'{sha256}.npz'))
|
95 |
+
load_queue.put((sha256, feats))
|
96 |
+
except Exception as e:
|
97 |
+
print(f"Error loading features for {sha256}: {e}")
|
98 |
+
loader_executor.map(loader, sha256s)
|
99 |
+
|
100 |
+
def saver(sha256, pack):
|
101 |
+
save_path = os.path.join(opt.output_dir, 'latents', latent_name, f'{sha256}.npz')
|
102 |
+
np.savez_compressed(save_path, **pack)
|
103 |
+
records.append({'sha256': sha256, f'latent_{latent_name}': True})
|
104 |
+
|
105 |
+
for _ in tqdm(range(len(sha256s)), desc="Extracting latents"):
|
106 |
+
sha256, feats = load_queue.get()
|
107 |
+
feats = sp.SparseTensor(
|
108 |
+
feats = torch.from_numpy(feats['patchtokens']).float(),
|
109 |
+
coords = torch.cat([
|
110 |
+
torch.zeros(feats['patchtokens'].shape[0], 1).int(),
|
111 |
+
torch.from_numpy(feats['indices']).int(),
|
112 |
+
], dim=1),
|
113 |
+
).cuda()
|
114 |
+
latent = encoder(feats, sample_posterior=False)
|
115 |
+
assert torch.isfinite(latent.feats).all(), "Non-finite latent"
|
116 |
+
pack = {
|
117 |
+
'feats': latent.feats.cpu().numpy().astype(np.float32),
|
118 |
+
'coords': latent.coords[:, 1:].cpu().numpy().astype(np.uint8),
|
119 |
+
}
|
120 |
+
saver_executor.submit(saver, sha256, pack)
|
121 |
+
|
122 |
+
saver_executor.shutdown(wait=True)
|
123 |
+
except:
|
124 |
+
print("Error happened during processing.")
|
125 |
+
|
126 |
+
records = pd.DataFrame.from_records(records)
|
127 |
+
records.to_csv(os.path.join(opt.output_dir, f'latent_{latent_name}_{opt.rank}.csv'), index=False)
|