Spaces:
Running
on
Zero
Running
on
Zero
Update trellis/datasets/structured_latent.py
Browse files- trellis/datasets/structured_latent.py +218 -218
trellis/datasets/structured_latent.py
CHANGED
@@ -1,218 +1,218 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
from typing import *
|
4 |
-
import numpy as np
|
5 |
-
import torch
|
6 |
-
import utils3d.torch
|
7 |
-
from .components import StandardDatasetBase, TextConditionedMixin, ImageConditionedMixin
|
8 |
-
from ..modules.sparse.basic import SparseTensor
|
9 |
-
from .. import models
|
10 |
-
from ..utils.render_utils import get_renderer
|
11 |
-
from ..utils.dist_utils import read_file_dist
|
12 |
-
from ..utils.data_utils import load_balanced_group_indices
|
13 |
-
|
14 |
-
|
15 |
-
class SLatVisMixin:
|
16 |
-
def __init__(
|
17 |
-
self,
|
18 |
-
*args,
|
19 |
-
pretrained_slat_dec: str = '
|
20 |
-
slat_dec_path: Optional[str] = None,
|
21 |
-
slat_dec_ckpt: Optional[str] = None,
|
22 |
-
**kwargs
|
23 |
-
):
|
24 |
-
super().__init__(*args, **kwargs)
|
25 |
-
self.slat_dec = None
|
26 |
-
self.pretrained_slat_dec = pretrained_slat_dec
|
27 |
-
self.slat_dec_path = slat_dec_path
|
28 |
-
self.slat_dec_ckpt = slat_dec_ckpt
|
29 |
-
|
30 |
-
def _loading_slat_dec(self):
|
31 |
-
if self.slat_dec is not None:
|
32 |
-
return
|
33 |
-
if self.slat_dec_path is not None:
|
34 |
-
cfg = json.load(open(os.path.join(self.slat_dec_path, 'config.json'), 'r'))
|
35 |
-
decoder = getattr(models, cfg['models']['decoder']['name'])(**cfg['models']['decoder']['args'])
|
36 |
-
ckpt_path = os.path.join(self.slat_dec_path, 'ckpts', f'decoder_{self.slat_dec_ckpt}.pt')
|
37 |
-
decoder.load_state_dict(torch.load(read_file_dist(ckpt_path), map_location='cpu', weights_only=True))
|
38 |
-
else:
|
39 |
-
decoder = models.from_pretrained(self.pretrained_slat_dec)
|
40 |
-
self.slat_dec = decoder.cuda().eval()
|
41 |
-
|
42 |
-
def _delete_slat_dec(self):
|
43 |
-
del self.slat_dec
|
44 |
-
self.slat_dec = None
|
45 |
-
|
46 |
-
@torch.no_grad()
|
47 |
-
def decode_latent(self, z, batch_size=4):
|
48 |
-
self._loading_slat_dec()
|
49 |
-
reps = []
|
50 |
-
if self.normalization is not None:
|
51 |
-
z = z * self.std.to(z.device) + self.mean.to(z.device)
|
52 |
-
for i in range(0, z.shape[0], batch_size):
|
53 |
-
reps.append(self.slat_dec(z[i:i+batch_size]))
|
54 |
-
reps = sum(reps, [])
|
55 |
-
self._delete_slat_dec()
|
56 |
-
return reps
|
57 |
-
|
58 |
-
@torch.no_grad()
|
59 |
-
def visualize_sample(self, x_0: Union[SparseTensor, dict]):
|
60 |
-
x_0 = x_0 if isinstance(x_0, SparseTensor) else x_0['x_0']
|
61 |
-
reps = self.decode_latent(x_0.cuda())
|
62 |
-
|
63 |
-
# Build camera
|
64 |
-
yaws = [0, np.pi / 2, np.pi, 3 * np.pi / 2]
|
65 |
-
yaws_offset = np.random.uniform(-np.pi / 4, np.pi / 4)
|
66 |
-
yaws = [y + yaws_offset for y in yaws]
|
67 |
-
pitch = [np.random.uniform(-np.pi / 4, np.pi / 4) for _ in range(4)]
|
68 |
-
|
69 |
-
exts = []
|
70 |
-
ints = []
|
71 |
-
for yaw, pitch in zip(yaws, pitch):
|
72 |
-
orig = torch.tensor([
|
73 |
-
np.sin(yaw) * np.cos(pitch),
|
74 |
-
np.cos(yaw) * np.cos(pitch),
|
75 |
-
np.sin(pitch),
|
76 |
-
]).float().cuda() * 2
|
77 |
-
fov = torch.deg2rad(torch.tensor(40)).cuda()
|
78 |
-
extrinsics = utils3d.torch.extrinsics_look_at(orig, torch.tensor([0, 0, 0]).float().cuda(), torch.tensor([0, 0, 1]).float().cuda())
|
79 |
-
intrinsics = utils3d.torch.intrinsics_from_fov_xy(fov, fov)
|
80 |
-
exts.append(extrinsics)
|
81 |
-
ints.append(intrinsics)
|
82 |
-
|
83 |
-
renderer = get_renderer(reps[0])
|
84 |
-
images = []
|
85 |
-
for representation in reps:
|
86 |
-
image = torch.zeros(3, 1024, 1024).cuda()
|
87 |
-
tile = [2, 2]
|
88 |
-
for j, (ext, intr) in enumerate(zip(exts, ints)):
|
89 |
-
res = renderer.render(representation, ext, intr)
|
90 |
-
image[:, 512 * (j // tile[1]):512 * (j // tile[1] + 1), 512 * (j % tile[1]):512 * (j % tile[1] + 1)] = res['color']
|
91 |
-
images.append(image)
|
92 |
-
images = torch.stack(images)
|
93 |
-
|
94 |
-
return images
|
95 |
-
|
96 |
-
|
97 |
-
class SLat(SLatVisMixin, StandardDatasetBase):
|
98 |
-
"""
|
99 |
-
structured latent dataset
|
100 |
-
|
101 |
-
Args:
|
102 |
-
roots (str): path to the dataset
|
103 |
-
latent_model (str): name of the latent model
|
104 |
-
min_aesthetic_score (float): minimum aesthetic score
|
105 |
-
max_num_voxels (int): maximum number of voxels
|
106 |
-
normalization (dict): normalization stats
|
107 |
-
pretrained_slat_dec (str): name of the pretrained slat decoder
|
108 |
-
slat_dec_path (str): path to the slat decoder, if given, will override the pretrained_slat_dec
|
109 |
-
slat_dec_ckpt (str): name of the slat decoder checkpoint
|
110 |
-
"""
|
111 |
-
def __init__(self,
|
112 |
-
roots: str,
|
113 |
-
*,
|
114 |
-
latent_model: str,
|
115 |
-
min_aesthetic_score: float = 5.0,
|
116 |
-
max_num_voxels: int = 32768,
|
117 |
-
normalization: Optional[dict] = None,
|
118 |
-
pretrained_slat_dec: str = '
|
119 |
-
slat_dec_path: Optional[str] = None,
|
120 |
-
slat_dec_ckpt: Optional[str] = None,
|
121 |
-
):
|
122 |
-
self.normalization = normalization
|
123 |
-
self.latent_model = latent_model
|
124 |
-
self.min_aesthetic_score = min_aesthetic_score
|
125 |
-
self.max_num_voxels = max_num_voxels
|
126 |
-
self.value_range = (0, 1)
|
127 |
-
|
128 |
-
super().__init__(
|
129 |
-
roots,
|
130 |
-
pretrained_slat_dec=pretrained_slat_dec,
|
131 |
-
slat_dec_path=slat_dec_path,
|
132 |
-
slat_dec_ckpt=slat_dec_ckpt,
|
133 |
-
)
|
134 |
-
|
135 |
-
self.loads = [self.metadata.loc[sha256, 'num_voxels'] for _, sha256 in self.instances]
|
136 |
-
|
137 |
-
if self.normalization is not None:
|
138 |
-
self.mean = torch.tensor(self.normalization['mean']).reshape(1, -1)
|
139 |
-
self.std = torch.tensor(self.normalization['std']).reshape(1, -1)
|
140 |
-
|
141 |
-
def filter_metadata(self, metadata):
|
142 |
-
stats = {}
|
143 |
-
metadata = metadata[metadata[f'latent_{self.latent_model}']]
|
144 |
-
stats['With latent'] = len(metadata)
|
145 |
-
metadata = metadata[metadata['aesthetic_score'] >= self.min_aesthetic_score]
|
146 |
-
stats[f'Aesthetic score >= {self.min_aesthetic_score}'] = len(metadata)
|
147 |
-
metadata = metadata[metadata['num_voxels'] <= self.max_num_voxels]
|
148 |
-
stats[f'Num voxels <= {self.max_num_voxels}'] = len(metadata)
|
149 |
-
return metadata, stats
|
150 |
-
|
151 |
-
def get_instance(self, root, instance):
|
152 |
-
data = np.load(os.path.join(root, 'latents', self.latent_model, f'{instance}.npz'))
|
153 |
-
coords = torch.tensor(data['coords']).int()
|
154 |
-
feats = torch.tensor(data['feats']).float()
|
155 |
-
if self.normalization is not None:
|
156 |
-
feats = (feats - self.mean) / self.std
|
157 |
-
return {
|
158 |
-
'coords': coords,
|
159 |
-
'feats': feats,
|
160 |
-
}
|
161 |
-
|
162 |
-
@staticmethod
|
163 |
-
def collate_fn(batch, split_size=None):
|
164 |
-
if split_size is None:
|
165 |
-
group_idx = [list(range(len(batch)))]
|
166 |
-
else:
|
167 |
-
group_idx = load_balanced_group_indices([b['coords'].shape[0] for b in batch], split_size)
|
168 |
-
packs = []
|
169 |
-
for group in group_idx:
|
170 |
-
sub_batch = [batch[i] for i in group]
|
171 |
-
pack = {}
|
172 |
-
coords = []
|
173 |
-
feats = []
|
174 |
-
layout = []
|
175 |
-
start = 0
|
176 |
-
for i, b in enumerate(sub_batch):
|
177 |
-
coords.append(torch.cat([torch.full((b['coords'].shape[0], 1), i, dtype=torch.int32), b['coords']], dim=-1))
|
178 |
-
feats.append(b['feats'])
|
179 |
-
layout.append(slice(start, start + b['coords'].shape[0]))
|
180 |
-
start += b['coords'].shape[0]
|
181 |
-
coords = torch.cat(coords)
|
182 |
-
feats = torch.cat(feats)
|
183 |
-
pack['x_0'] = SparseTensor(
|
184 |
-
coords=coords,
|
185 |
-
feats=feats,
|
186 |
-
)
|
187 |
-
pack['x_0']._shape = torch.Size([len(group), *sub_batch[0]['feats'].shape[1:]])
|
188 |
-
pack['x_0'].register_spatial_cache('layout', layout)
|
189 |
-
|
190 |
-
# collate other data
|
191 |
-
keys = [k for k in sub_batch[0].keys() if k not in ['coords', 'feats']]
|
192 |
-
for k in keys:
|
193 |
-
if isinstance(sub_batch[0][k], torch.Tensor):
|
194 |
-
pack[k] = torch.stack([b[k] for b in sub_batch])
|
195 |
-
elif isinstance(sub_batch[0][k], list):
|
196 |
-
pack[k] = sum([b[k] for b in sub_batch], [])
|
197 |
-
else:
|
198 |
-
pack[k] = [b[k] for b in sub_batch]
|
199 |
-
|
200 |
-
packs.append(pack)
|
201 |
-
|
202 |
-
if split_size is None:
|
203 |
-
return packs[0]
|
204 |
-
return packs
|
205 |
-
|
206 |
-
|
207 |
-
class TextConditionedSLat(TextConditionedMixin, SLat):
|
208 |
-
"""
|
209 |
-
Text conditioned structured latent dataset
|
210 |
-
"""
|
211 |
-
pass
|
212 |
-
|
213 |
-
|
214 |
-
class ImageConditionedSLat(ImageConditionedMixin, SLat):
|
215 |
-
"""
|
216 |
-
Image conditioned structured latent dataset
|
217 |
-
"""
|
218 |
-
pass
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from typing import *
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import utils3d.torch
|
7 |
+
from .components import StandardDatasetBase, TextConditionedMixin, ImageConditionedMixin
|
8 |
+
from ..modules.sparse.basic import SparseTensor
|
9 |
+
from .. import models
|
10 |
+
from ..utils.render_utils import get_renderer
|
11 |
+
from ..utils.dist_utils import read_file_dist
|
12 |
+
from ..utils.data_utils import load_balanced_group_indices
|
13 |
+
|
14 |
+
|
15 |
+
class SLatVisMixin:
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
*args,
|
19 |
+
pretrained_slat_dec: str = 'cavargas10/TRELLIS/ckpts/slat_dec_gs_swin8_B_64l8gs32_fp16',
|
20 |
+
slat_dec_path: Optional[str] = None,
|
21 |
+
slat_dec_ckpt: Optional[str] = None,
|
22 |
+
**kwargs
|
23 |
+
):
|
24 |
+
super().__init__(*args, **kwargs)
|
25 |
+
self.slat_dec = None
|
26 |
+
self.pretrained_slat_dec = pretrained_slat_dec
|
27 |
+
self.slat_dec_path = slat_dec_path
|
28 |
+
self.slat_dec_ckpt = slat_dec_ckpt
|
29 |
+
|
30 |
+
def _loading_slat_dec(self):
|
31 |
+
if self.slat_dec is not None:
|
32 |
+
return
|
33 |
+
if self.slat_dec_path is not None:
|
34 |
+
cfg = json.load(open(os.path.join(self.slat_dec_path, 'config.json'), 'r'))
|
35 |
+
decoder = getattr(models, cfg['models']['decoder']['name'])(**cfg['models']['decoder']['args'])
|
36 |
+
ckpt_path = os.path.join(self.slat_dec_path, 'ckpts', f'decoder_{self.slat_dec_ckpt}.pt')
|
37 |
+
decoder.load_state_dict(torch.load(read_file_dist(ckpt_path), map_location='cpu', weights_only=True))
|
38 |
+
else:
|
39 |
+
decoder = models.from_pretrained(self.pretrained_slat_dec)
|
40 |
+
self.slat_dec = decoder.cuda().eval()
|
41 |
+
|
42 |
+
def _delete_slat_dec(self):
|
43 |
+
del self.slat_dec
|
44 |
+
self.slat_dec = None
|
45 |
+
|
46 |
+
@torch.no_grad()
|
47 |
+
def decode_latent(self, z, batch_size=4):
|
48 |
+
self._loading_slat_dec()
|
49 |
+
reps = []
|
50 |
+
if self.normalization is not None:
|
51 |
+
z = z * self.std.to(z.device) + self.mean.to(z.device)
|
52 |
+
for i in range(0, z.shape[0], batch_size):
|
53 |
+
reps.append(self.slat_dec(z[i:i+batch_size]))
|
54 |
+
reps = sum(reps, [])
|
55 |
+
self._delete_slat_dec()
|
56 |
+
return reps
|
57 |
+
|
58 |
+
@torch.no_grad()
|
59 |
+
def visualize_sample(self, x_0: Union[SparseTensor, dict]):
|
60 |
+
x_0 = x_0 if isinstance(x_0, SparseTensor) else x_0['x_0']
|
61 |
+
reps = self.decode_latent(x_0.cuda())
|
62 |
+
|
63 |
+
# Build camera
|
64 |
+
yaws = [0, np.pi / 2, np.pi, 3 * np.pi / 2]
|
65 |
+
yaws_offset = np.random.uniform(-np.pi / 4, np.pi / 4)
|
66 |
+
yaws = [y + yaws_offset for y in yaws]
|
67 |
+
pitch = [np.random.uniform(-np.pi / 4, np.pi / 4) for _ in range(4)]
|
68 |
+
|
69 |
+
exts = []
|
70 |
+
ints = []
|
71 |
+
for yaw, pitch in zip(yaws, pitch):
|
72 |
+
orig = torch.tensor([
|
73 |
+
np.sin(yaw) * np.cos(pitch),
|
74 |
+
np.cos(yaw) * np.cos(pitch),
|
75 |
+
np.sin(pitch),
|
76 |
+
]).float().cuda() * 2
|
77 |
+
fov = torch.deg2rad(torch.tensor(40)).cuda()
|
78 |
+
extrinsics = utils3d.torch.extrinsics_look_at(orig, torch.tensor([0, 0, 0]).float().cuda(), torch.tensor([0, 0, 1]).float().cuda())
|
79 |
+
intrinsics = utils3d.torch.intrinsics_from_fov_xy(fov, fov)
|
80 |
+
exts.append(extrinsics)
|
81 |
+
ints.append(intrinsics)
|
82 |
+
|
83 |
+
renderer = get_renderer(reps[0])
|
84 |
+
images = []
|
85 |
+
for representation in reps:
|
86 |
+
image = torch.zeros(3, 1024, 1024).cuda()
|
87 |
+
tile = [2, 2]
|
88 |
+
for j, (ext, intr) in enumerate(zip(exts, ints)):
|
89 |
+
res = renderer.render(representation, ext, intr)
|
90 |
+
image[:, 512 * (j // tile[1]):512 * (j // tile[1] + 1), 512 * (j % tile[1]):512 * (j % tile[1] + 1)] = res['color']
|
91 |
+
images.append(image)
|
92 |
+
images = torch.stack(images)
|
93 |
+
|
94 |
+
return images
|
95 |
+
|
96 |
+
|
97 |
+
class SLat(SLatVisMixin, StandardDatasetBase):
|
98 |
+
"""
|
99 |
+
structured latent dataset
|
100 |
+
|
101 |
+
Args:
|
102 |
+
roots (str): path to the dataset
|
103 |
+
latent_model (str): name of the latent model
|
104 |
+
min_aesthetic_score (float): minimum aesthetic score
|
105 |
+
max_num_voxels (int): maximum number of voxels
|
106 |
+
normalization (dict): normalization stats
|
107 |
+
pretrained_slat_dec (str): name of the pretrained slat decoder
|
108 |
+
slat_dec_path (str): path to the slat decoder, if given, will override the pretrained_slat_dec
|
109 |
+
slat_dec_ckpt (str): name of the slat decoder checkpoint
|
110 |
+
"""
|
111 |
+
def __init__(self,
|
112 |
+
roots: str,
|
113 |
+
*,
|
114 |
+
latent_model: str,
|
115 |
+
min_aesthetic_score: float = 5.0,
|
116 |
+
max_num_voxels: int = 32768,
|
117 |
+
normalization: Optional[dict] = None,
|
118 |
+
pretrained_slat_dec: str = 'cavargas10/TRELLIS/ckpts/slat_dec_gs_swin8_B_64l8gs32_fp16',
|
119 |
+
slat_dec_path: Optional[str] = None,
|
120 |
+
slat_dec_ckpt: Optional[str] = None,
|
121 |
+
):
|
122 |
+
self.normalization = normalization
|
123 |
+
self.latent_model = latent_model
|
124 |
+
self.min_aesthetic_score = min_aesthetic_score
|
125 |
+
self.max_num_voxels = max_num_voxels
|
126 |
+
self.value_range = (0, 1)
|
127 |
+
|
128 |
+
super().__init__(
|
129 |
+
roots,
|
130 |
+
pretrained_slat_dec=pretrained_slat_dec,
|
131 |
+
slat_dec_path=slat_dec_path,
|
132 |
+
slat_dec_ckpt=slat_dec_ckpt,
|
133 |
+
)
|
134 |
+
|
135 |
+
self.loads = [self.metadata.loc[sha256, 'num_voxels'] for _, sha256 in self.instances]
|
136 |
+
|
137 |
+
if self.normalization is not None:
|
138 |
+
self.mean = torch.tensor(self.normalization['mean']).reshape(1, -1)
|
139 |
+
self.std = torch.tensor(self.normalization['std']).reshape(1, -1)
|
140 |
+
|
141 |
+
def filter_metadata(self, metadata):
|
142 |
+
stats = {}
|
143 |
+
metadata = metadata[metadata[f'latent_{self.latent_model}']]
|
144 |
+
stats['With latent'] = len(metadata)
|
145 |
+
metadata = metadata[metadata['aesthetic_score'] >= self.min_aesthetic_score]
|
146 |
+
stats[f'Aesthetic score >= {self.min_aesthetic_score}'] = len(metadata)
|
147 |
+
metadata = metadata[metadata['num_voxels'] <= self.max_num_voxels]
|
148 |
+
stats[f'Num voxels <= {self.max_num_voxels}'] = len(metadata)
|
149 |
+
return metadata, stats
|
150 |
+
|
151 |
+
def get_instance(self, root, instance):
|
152 |
+
data = np.load(os.path.join(root, 'latents', self.latent_model, f'{instance}.npz'))
|
153 |
+
coords = torch.tensor(data['coords']).int()
|
154 |
+
feats = torch.tensor(data['feats']).float()
|
155 |
+
if self.normalization is not None:
|
156 |
+
feats = (feats - self.mean) / self.std
|
157 |
+
return {
|
158 |
+
'coords': coords,
|
159 |
+
'feats': feats,
|
160 |
+
}
|
161 |
+
|
162 |
+
@staticmethod
|
163 |
+
def collate_fn(batch, split_size=None):
|
164 |
+
if split_size is None:
|
165 |
+
group_idx = [list(range(len(batch)))]
|
166 |
+
else:
|
167 |
+
group_idx = load_balanced_group_indices([b['coords'].shape[0] for b in batch], split_size)
|
168 |
+
packs = []
|
169 |
+
for group in group_idx:
|
170 |
+
sub_batch = [batch[i] for i in group]
|
171 |
+
pack = {}
|
172 |
+
coords = []
|
173 |
+
feats = []
|
174 |
+
layout = []
|
175 |
+
start = 0
|
176 |
+
for i, b in enumerate(sub_batch):
|
177 |
+
coords.append(torch.cat([torch.full((b['coords'].shape[0], 1), i, dtype=torch.int32), b['coords']], dim=-1))
|
178 |
+
feats.append(b['feats'])
|
179 |
+
layout.append(slice(start, start + b['coords'].shape[0]))
|
180 |
+
start += b['coords'].shape[0]
|
181 |
+
coords = torch.cat(coords)
|
182 |
+
feats = torch.cat(feats)
|
183 |
+
pack['x_0'] = SparseTensor(
|
184 |
+
coords=coords,
|
185 |
+
feats=feats,
|
186 |
+
)
|
187 |
+
pack['x_0']._shape = torch.Size([len(group), *sub_batch[0]['feats'].shape[1:]])
|
188 |
+
pack['x_0'].register_spatial_cache('layout', layout)
|
189 |
+
|
190 |
+
# collate other data
|
191 |
+
keys = [k for k in sub_batch[0].keys() if k not in ['coords', 'feats']]
|
192 |
+
for k in keys:
|
193 |
+
if isinstance(sub_batch[0][k], torch.Tensor):
|
194 |
+
pack[k] = torch.stack([b[k] for b in sub_batch])
|
195 |
+
elif isinstance(sub_batch[0][k], list):
|
196 |
+
pack[k] = sum([b[k] for b in sub_batch], [])
|
197 |
+
else:
|
198 |
+
pack[k] = [b[k] for b in sub_batch]
|
199 |
+
|
200 |
+
packs.append(pack)
|
201 |
+
|
202 |
+
if split_size is None:
|
203 |
+
return packs[0]
|
204 |
+
return packs
|
205 |
+
|
206 |
+
|
207 |
+
class TextConditionedSLat(TextConditionedMixin, SLat):
|
208 |
+
"""
|
209 |
+
Text conditioned structured latent dataset
|
210 |
+
"""
|
211 |
+
pass
|
212 |
+
|
213 |
+
|
214 |
+
class ImageConditionedSLat(ImageConditionedMixin, SLat):
|
215 |
+
"""
|
216 |
+
Image conditioned structured latent dataset
|
217 |
+
"""
|
218 |
+
pass
|