Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
import os | |
import shutil | |
os.environ['SPCONV_ALGO'] = 'native' | |
from typing import * | |
import torch | |
import numpy as np | |
import imageio | |
from easydict import EasyDict as edict | |
from PIL import Image, ImageOps | |
from trellis.pipelines import TrellisImageTo3DPipeline | |
from trellis.representations import Gaussian, MeshExtractResult | |
from trellis.utils import render_utils, postprocessing_utils | |
import torch | |
import torchvision.transforms.functional as TF | |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL | |
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler | |
from pathlib import Path | |
import logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - HF_SPACE_BOCETO - %(levelname)s - %(message)s') | |
style_list = [ | |
{ | |
"name": "(No style)", | |
"prompt": "{prompt}", | |
"negative_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", | |
}, | |
{ | |
"name": "Cinematic", | |
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", | |
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured", | |
}, | |
{ | |
"name": "3D Model", | |
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting", | |
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting", | |
}, | |
{ | |
"name": "Anime", | |
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed", | |
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast", | |
}, | |
] | |
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} | |
STYLE_NAMES = list(styles.keys()) | |
DEFAULT_STYLE_NAME = "3D Model" | |
MAX_SEED = np.iinfo(np.int32).max | |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') | |
os.makedirs(TMP_DIR, exist_ok=True) | |
def start_session(req: gr.Request): | |
session_hash = str(req.session_hash) | |
user_dir = os.path.join(TMP_DIR, session_hash) | |
logging.info(f"START SESSION: Creando directorio para la sesión {session_hash} en {user_dir}") | |
os.makedirs(user_dir, exist_ok=True) | |
def end_session(req: gr.Request): | |
session_hash = str(req.session_hash) | |
user_dir = os.path.join(TMP_DIR, session_hash) | |
logging.info(f"END SESSION: Intentando eliminar el directorio de la sesión {session_hash} en {user_dir}") | |
if os.path.exists(user_dir): | |
try: | |
shutil.rmtree(user_dir) | |
logging.info(f"Directorio de la sesión {session_hash} eliminado correctamente.") | |
except Exception as e: | |
logging.error(f"Error al eliminar el directorio de la sesión {session_hash}: {e}") | |
else: | |
logging.warning(f"El directorio de la sesión {session_hash} no fue encontrado al intentar eliminarlo. Es posible que ya haya sido limpiado.") | |
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]: | |
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) | |
return p.replace("{prompt}", positive), n + negative | |
def get_seed(randomize_seed: bool, seed: int) -> int: | |
new_seed = np.random.randint(0, MAX_SEED) if randomize_seed else seed | |
logging.info(f"Usando seed: {new_seed}") | |
return new_seed | |
def preprocess_image( | |
image: Image.Image, | |
prompt: str = "", | |
negative_prompt: str = "", | |
style_name: str = "", | |
num_steps: int = 25, | |
guidance_scale: float = 5, | |
controlnet_conditioning_scale: float = 1.0, | |
req: gr.Request = None, | |
) -> str: | |
session_hash = str(req.session_hash) | |
user_dir = os.path.join(TMP_DIR, session_hash) | |
logging.info(f"[{session_hash}] Iniciando preprocess_image con prompt: '{prompt[:50]}...'") | |
if image is None: | |
logging.error(f"[{session_hash}] La entrada de imagen es nula.") | |
raise ValueError("La imagen de entrada no puede estar vacía.") | |
input_image = image | |
width, height = input_image.size | |
ratio = np.sqrt(1024.0 * 1024.0 / (width * height)) | |
new_width, new_height = int(width * ratio), int(height * ratio) | |
input_image = input_image.resize((new_width, new_height)) | |
if input_image.mode == 'RGBA': | |
r, g, b, a = input_image.split() | |
rgb_image = Image.merge('RGB', (r, g, b)) | |
inverted_image = ImageOps.invert(rgb_image) | |
inverted_image.putalpha(a) | |
input_image = inverted_image | |
else: | |
input_image = ImageOps.invert(input_image.convert('RGB')) | |
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt) | |
output_image = pipe_control( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
image=input_image, | |
num_inference_steps=num_steps, | |
controlnet_conditioning_scale=controlnet_conditioning_scale, | |
guidance_scale=guidance_scale, | |
width=new_width, | |
height=new_height, | |
).images[0] | |
processed_image_path = os.path.join(user_dir, 'processed_image.png') | |
output_image.save(processed_image_path) | |
logging.info(f"[{session_hash}] Imagen preprocesada y guardada en: {processed_image_path}") | |
return processed_image_path | |
def image_to_3d( | |
image_path: str, | |
seed: int, | |
ss_guidance_strength: float, | |
ss_sampling_steps: int, | |
slat_guidance_strength: float, | |
slat_sampling_steps: int, | |
req: gr.Request, | |
) -> Tuple[dict, str]: | |
session_hash = str(req.session_hash) | |
user_dir = os.path.join(TMP_DIR, session_hash) | |
logging.info(f"[{session_hash}] Iniciando image_to_3d desde la imagen: {image_path}") | |
processed_image = pipeline.preprocess_image(Image.open(image_path)) | |
outputs = pipeline.run( | |
processed_image, | |
seed=seed, | |
formats=["gaussian", "mesh"], | |
preprocess_image=False, | |
sparse_structure_sampler_params={"steps": ss_sampling_steps, "cfg_strength": ss_guidance_strength}, | |
slat_sampler_params={"steps": slat_sampling_steps, "cfg_strength": slat_guidance_strength}, | |
) | |
logging.info(f"[{session_hash}] Generación del modelo completada. Renderizando video...") | |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] | |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] | |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] | |
video_path = os.path.join(user_dir, 'sample.mp4') | |
imageio.mimsave(video_path, video, fps=15) | |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0]) | |
torch.cuda.empty_cache() | |
logging.info(f"[{session_hash}] Video renderizado y estado empaquetado. Devolviendo: {video_path}") | |
return state, video_path | |
def extract_glb(state: dict, mesh_simplify: float, texture_size: int, req: gr.Request) -> Tuple[str, str]: | |
session_hash = str(req.session_hash) | |
user_dir = os.path.join(TMP_DIR, session_hash) | |
logging.info(f"[{session_hash}] Iniciando extract_glb...") | |
gs, mesh = unpack_state(state) | |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) | |
glb_path = os.path.join(user_dir, 'sample.glb') | |
glb.export(glb_path) | |
torch.cuda.empty_cache() | |
logging.info(f"[{session_hash}] GLB extraído. Devolviendo: {glb_path}") | |
return glb_path, glb_path | |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict: | |
return { | |
'gaussian': {**gs.init_params, '_xyz': gs._xyz.cpu().numpy(), '_features_dc': gs._features_dc.cpu().numpy(), '_scaling': gs._scaling.cpu().numpy(), '_rotation': gs._rotation.cpu().numpy(), '_opacity': gs._opacity.cpu().numpy()}, | |
'mesh': {'vertices': mesh.vertices.cpu().numpy(), 'faces': mesh.faces.cpu().numpy()}, | |
} | |
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]: | |
gs = Gaussian(aabb=state['gaussian']['aabb'], sh_degree=state['gaussian']['sh_degree'], mininum_kernel_size=state['gaussian']['mininum_kernel_size'], scaling_bias=state['gaussian']['scaling_bias'], opacity_bias=state['gaussian']['opacity_bias'], scaling_activation=state['gaussian']['scaling_activation']) | |
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') | |
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') | |
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') | |
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') | |
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') | |
mesh = edict(vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), faces=torch.tensor(state['mesh']['faces'], device='cuda')) | |
return gs, mesh | |
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]: | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
gs, _ = unpack_state(state) | |
gaussian_path = os.path.join(user_dir, 'sample.ply') | |
gs.save_ply(gaussian_path) | |
torch.cuda.empty_cache() | |
return gaussian_path, gaussian_path | |
with gr.Blocks(delete_cache=(600, 600)) as demo: | |
gr.Markdown(""" | |
# UTPL - Conversión de Boceto a objetos 3D usando IA | |
### Tesis: "Objetos tridimensionales creados por IA: Innovación en entornos virtuales" | |
**Autor:** Carlos Vargas | |
**Base técnica:** Adaptación de [TRELLIS](https://trellis3d.github.io/) (herramienta de código abierto para generación 3D) | |
**Propósito educativo:** Demostraciones académicas e Investigación en modelado 3D automático. | |
--- | |
**Modelos Utilizados:** | |
- **ControlNet Scribble:** `xinsir/controlnet-scribble-sdxl-1.0` | |
- **Stable Diffusion Base:** `sd-community/sdxl-flash` | |
- **VAE:** `madebyollin/sdxl-vae-fp16-fix` | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Column(): | |
# --- ¡MODIFICADO! Cambiamos ImageEditor por Image --- | |
image_prompt = gr.Image(label="Input sketch", type="pil", image_mode="RGBA", height=512) | |
with gr.Row(): | |
sketch_btn = gr.Button("Process Sketch") | |
generate_btn = gr.Button("Generate 3D") | |
with gr.Row(): | |
prompt = gr.Textbox(label="Prompt") | |
style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME) | |
with gr.Accordion(label="Generation Settings", open=False): | |
with gr.Tab(label="Sketch-to-Image Generation"): | |
negative_prompt = gr.Textbox(label="Negative prompt") | |
num_steps = gr.Slider(1, 20, label="Number of steps", value=8, step=1) | |
guidance_scale = gr.Slider(0.1, 10.0, label="Guidance scale", value=5, step=0.1) | |
controlnet_conditioning_scale = gr.Slider(0.5, 5.0, label="ControlNet Conditioning Scale", value=0.85, step=0.01) | |
with gr.Tab(label="3D Generation"): | |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1) | |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
gr.Markdown("Stage 1: Sparse Structure Generation") | |
with gr.Row(): | |
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) | |
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
gr.Markdown("Stage 2: Structured Latent Generation") | |
with gr.Row(): | |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1) | |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
with gr.Accordion(label="GLB Extraction Settings", open=False): | |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01) | |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512) | |
with gr.Row(): | |
extract_glb_btn = gr.Button("Extract GLB", interactive=False) | |
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False) | |
with gr.Column(): | |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300) | |
image_prompt_processed = gr.Image(label="Processed Sketch", interactive=False, type="filepath", height=512) | |
model_output = gr.Model3D(label="Extracted GLB/Gaussian", height=300) | |
with gr.Row(): | |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False) | |
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False) | |
output_buf = gr.State() | |
demo.load(start_session) | |
demo.unload(end_session) | |
sketch_btn.click( | |
preprocess_image, | |
inputs=[image_prompt, prompt, negative_prompt, style, num_steps, guidance_scale, controlnet_conditioning_scale], | |
outputs=[image_prompt_processed], | |
api_name="preprocess_image" | |
) | |
generate_btn.click( | |
get_seed, | |
inputs=[randomize_seed, seed], | |
outputs=[seed], | |
).then( | |
image_to_3d, | |
inputs=[image_prompt_processed, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps], | |
outputs=[output_buf, video_output], | |
api_name="image_to_3d" | |
) | |
generate_btn.click( | |
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]), | |
outputs=[extract_glb_btn, extract_gs_btn], | |
) | |
video_output.clear( | |
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]), | |
outputs=[extract_glb_btn, extract_gs_btn], | |
) | |
extract_glb_btn.click( | |
extract_glb, | |
inputs=[output_buf, mesh_simplify, texture_size], | |
outputs=[model_output, download_glb], | |
api_name="extract_glb" | |
) | |
extract_glb_btn.click( | |
lambda: gr.Button(interactive=True), | |
outputs=[download_glb] | |
) | |
extract_gs_btn.click( | |
extract_gaussian, | |
inputs=[output_buf], | |
outputs=[model_output, download_gs], | |
api_name="extract_gaussian" | |
) | |
extract_gs_btn.click( | |
lambda: gr.Button(interactive=True), | |
outputs=[download_gs] | |
) | |
model_output.clear( | |
lambda: gr.Button(interactive=False), | |
outputs=[download_glb], | |
) | |
if __name__ == "__main__": | |
pipeline = TrellisImageTo3DPipeline.from_pretrained("cavargas10/TRELLIS") | |
pipeline.cuda() | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
controlnet = ControlNetModel.from_pretrained("xinsir/controlnet-scribble-sdxl-1.0", torch_dtype=torch.float16) | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
pipe_control = StableDiffusionXLControlNetPipeline.from_pretrained("sd-community/sdxl-flash", controlnet=controlnet, vae=vae, torch_dtype=torch.float16) | |
pipe_control.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_control.scheduler.config) | |
pipe_control.to(device) | |
try: | |
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) | |
except: | |
pass | |
demo.launch(show_error=True) |