Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,652 Bytes
70975ae 3057b36 db6a3b7 cd41f5f a1a061b 70975ae 7ea9149 6980cac db6a3b7 16fc781 db6a3b7 a65fb48 6980cac a1a061b d4ca03c 6980cac a65fb48 6980cac a1a061b 6980cac a65fb48 6980cac d4ca03c 945c4e6 2cf8efe d4ca03c a1a061b 6980cac d4ca03c acafb1b 70975ae 84113dc 654c4bf 84113dc aeb987f d4ca03c 654c4bf d4ca03c 654c4bf d4ca03c 84113dc a1a061b d4ca03c 84113dc 654c4bf 6980cac 84113dc d4ca03c 6980cac d4ca03c 70975ae a1a061b 84113dc aeb987f d4ca03c aeb987f d4ca03c ed6baf2 3057b36 6980cac d4ca03c 70975ae 6980cac d4ca03c b05b1ea d4ca03c b05b1ea 654c4bf b05b1ea d4ca03c ea3c5de b7b00e2 f17c864 a1a061b d4ca03c a1a061b db6a3b7 b7b00e2 654c4bf d4ca03c 16fc781 a1a061b ed6baf2 db6a3b7 a1a061b d4ca03c a1a061b 7ea9149 d4ca03c 654c4bf d4ca03c aeb987f d4ca03c 654c4bf d4ca03c 654c4bf d4ca03c ea3c5de 654c4bf 70975ae ec252b1 c0bc792 70975ae 6980cac 654c4bf a1a061b d4ca03c a1a061b d4ca03c a1a061b 74a6aa8 d4ca03c a1a061b 70975ae a1a061b ea3c5de 6980cac a1a061b d4ca03c 74a6aa8 a1a061b ea3c5de b05b1ea 9201ecc ea3c5de a1a061b b05b1ea a1a061b 6980cac a1a061b d4ca03c a1a061b 44a6155 70975ae b05b1ea a1a061b d4ca03c ea3c5de a1a061b ea3c5de a1a061b ea3c5de f17c864 ea3c5de a1a061b 6980cac a1a061b 70975ae d4ca03c 44a6155 d4ca03c a1a061b d4ca03c ea3c5de d4ca03c ea3c5de d4ca03c ea3c5de a1a061b 44a6155 a1a061b 70975ae db6a3b7 380ebcb 2e33d6c d4ca03c 2e33d6c d4ca03c 6980cac 2e33d6c d4ca03c 2e33d6c 9462359 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
import gradio as gr
import spaces
import os
import shutil
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from PIL import Image, ImageOps
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
import torch
import torchvision.transforms.functional as TF
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
from pathlib import Path
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - HF_SPACE_BOCETO - %(levelname)s - %(message)s')
style_list = [
{
"name": "(No style)",
"prompt": "{prompt}",
"negative_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
},
{
"name": "Cinematic",
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
},
{
"name": "3D Model",
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
},
{
"name": "Anime",
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "3D Model"
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)
def start_session(req: gr.Request):
session_hash = str(req.session_hash)
user_dir = os.path.join(TMP_DIR, session_hash)
logging.info(f"START SESSION: Creando directorio para la sesión {session_hash} en {user_dir}")
os.makedirs(user_dir, exist_ok=True)
def end_session(req: gr.Request):
session_hash = str(req.session_hash)
user_dir = os.path.join(TMP_DIR, session_hash)
logging.info(f"END SESSION: Intentando eliminar el directorio de la sesión {session_hash} en {user_dir}")
if os.path.exists(user_dir):
try:
shutil.rmtree(user_dir)
logging.info(f"Directorio de la sesión {session_hash} eliminado correctamente.")
except Exception as e:
logging.error(f"Error al eliminar el directorio de la sesión {session_hash}: {e}")
else:
logging.warning(f"El directorio de la sesión {session_hash} no fue encontrado al intentar eliminarlo. Es posible que ya haya sido limpiado.")
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
return p.replace("{prompt}", positive), n + negative
def get_seed(randomize_seed: bool, seed: int) -> int:
new_seed = np.random.randint(0, MAX_SEED) if randomize_seed else seed
logging.info(f"Usando seed: {new_seed}")
return new_seed
@spaces.GPU
def preprocess_image(
image: Image.Image,
prompt: str = "",
negative_prompt: str = "",
style_name: str = "",
num_steps: int = 25,
guidance_scale: float = 5,
controlnet_conditioning_scale: float = 1.0,
req: gr.Request = None,
) -> str:
session_hash = str(req.session_hash)
user_dir = os.path.join(TMP_DIR, session_hash)
logging.info(f"[{session_hash}] Iniciando preprocess_image con prompt: '{prompt[:50]}...'")
if image is None:
logging.error(f"[{session_hash}] La entrada de imagen es nula.")
raise ValueError("La imagen de entrada no puede estar vacía.")
input_image = image
width, height = input_image.size
ratio = np.sqrt(1024.0 * 1024.0 / (width * height))
new_width, new_height = int(width * ratio), int(height * ratio)
input_image = input_image.resize((new_width, new_height))
if input_image.mode == 'RGBA':
r, g, b, a = input_image.split()
rgb_image = Image.merge('RGB', (r, g, b))
inverted_image = ImageOps.invert(rgb_image)
inverted_image.putalpha(a)
input_image = inverted_image
else:
input_image = ImageOps.invert(input_image.convert('RGB'))
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
output_image = pipe_control(
prompt=prompt,
negative_prompt=negative_prompt,
image=input_image,
num_inference_steps=num_steps,
controlnet_conditioning_scale=controlnet_conditioning_scale,
guidance_scale=guidance_scale,
width=new_width,
height=new_height,
).images[0]
processed_image_path = os.path.join(user_dir, 'processed_image.png')
output_image.save(processed_image_path)
logging.info(f"[{session_hash}] Imagen preprocesada y guardada en: {processed_image_path}")
return processed_image_path
@spaces.GPU
def image_to_3d(
image_path: str,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
req: gr.Request,
) -> Tuple[dict, str]:
session_hash = str(req.session_hash)
user_dir = os.path.join(TMP_DIR, session_hash)
logging.info(f"[{session_hash}] Iniciando image_to_3d desde la imagen: {image_path}")
processed_image = pipeline.preprocess_image(Image.open(image_path))
outputs = pipeline.run(
processed_image,
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={"steps": ss_sampling_steps, "cfg_strength": ss_guidance_strength},
slat_sampler_params={"steps": slat_sampling_steps, "cfg_strength": slat_guidance_strength},
)
logging.info(f"[{session_hash}] Generación del modelo completada. Renderizando video...")
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
video_path = os.path.join(user_dir, 'sample.mp4')
imageio.mimsave(video_path, video, fps=15)
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
torch.cuda.empty_cache()
logging.info(f"[{session_hash}] Video renderizado y estado empaquetado. Devolviendo: {video_path}")
return state, video_path
@spaces.GPU(duration=90)
def extract_glb(state: dict, mesh_simplify: float, texture_size: int, req: gr.Request) -> Tuple[str, str]:
session_hash = str(req.session_hash)
user_dir = os.path.join(TMP_DIR, session_hash)
logging.info(f"[{session_hash}] Iniciando extract_glb...")
gs, mesh = unpack_state(state)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = os.path.join(user_dir, 'sample.glb')
glb.export(glb_path)
torch.cuda.empty_cache()
logging.info(f"[{session_hash}] GLB extraído. Devolviendo: {glb_path}")
return glb_path, glb_path
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
return {
'gaussian': {**gs.init_params, '_xyz': gs._xyz.cpu().numpy(), '_features_dc': gs._features_dc.cpu().numpy(), '_scaling': gs._scaling.cpu().numpy(), '_rotation': gs._rotation.cpu().numpy(), '_opacity': gs._opacity.cpu().numpy()},
'mesh': {'vertices': mesh.vertices.cpu().numpy(), 'faces': mesh.faces.cpu().numpy()},
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
gs = Gaussian(aabb=state['gaussian']['aabb'], sh_degree=state['gaussian']['sh_degree'], mininum_kernel_size=state['gaussian']['mininum_kernel_size'], scaling_bias=state['gaussian']['scaling_bias'], opacity_bias=state['gaussian']['opacity_bias'], scaling_activation=state['gaussian']['scaling_activation'])
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
mesh = edict(vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), faces=torch.tensor(state['mesh']['faces'], device='cuda'))
return gs, mesh
@spaces.GPU
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
gs, _ = unpack_state(state)
gaussian_path = os.path.join(user_dir, 'sample.ply')
gs.save_ply(gaussian_path)
torch.cuda.empty_cache()
return gaussian_path, gaussian_path
with gr.Blocks(delete_cache=(600, 600)) as demo:
gr.Markdown("""
# UTPL - Conversión de Boceto a objetos 3D usando IA
### Tesis: "Objetos tridimensionales creados por IA: Innovación en entornos virtuales"
**Autor:** Carlos Vargas
**Base técnica:** Adaptación de [TRELLIS](https://trellis3d.github.io/) (herramienta de código abierto para generación 3D)
**Propósito educativo:** Demostraciones académicas e Investigación en modelado 3D automático.
---
**Modelos Utilizados:**
- **ControlNet Scribble:** `xinsir/controlnet-scribble-sdxl-1.0`
- **Stable Diffusion Base:** `sd-community/sdxl-flash`
- **VAE:** `madebyollin/sdxl-vae-fp16-fix`
""")
with gr.Row():
with gr.Column():
with gr.Column():
# --- ¡MODIFICADO! Cambiamos ImageEditor por Image ---
image_prompt = gr.Image(label="Input sketch", type="pil", image_mode="RGBA", height=512)
with gr.Row():
sketch_btn = gr.Button("Process Sketch")
generate_btn = gr.Button("Generate 3D")
with gr.Row():
prompt = gr.Textbox(label="Prompt")
style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
with gr.Accordion(label="Generation Settings", open=False):
with gr.Tab(label="Sketch-to-Image Generation"):
negative_prompt = gr.Textbox(label="Negative prompt")
num_steps = gr.Slider(1, 20, label="Number of steps", value=8, step=1)
guidance_scale = gr.Slider(0.1, 10.0, label="Guidance scale", value=5, step=0.1)
controlnet_conditioning_scale = gr.Slider(0.5, 5.0, label="ControlNet Conditioning Scale", value=0.85, step=0.01)
with gr.Tab(label="3D Generation"):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
gr.Markdown("Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
with gr.Accordion(label="GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
with gr.Row():
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
with gr.Column():
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
image_prompt_processed = gr.Image(label="Processed Sketch", interactive=False, type="filepath", height=512)
model_output = gr.Model3D(label="Extracted GLB/Gaussian", height=300)
with gr.Row():
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
output_buf = gr.State()
demo.load(start_session)
demo.unload(end_session)
sketch_btn.click(
preprocess_image,
inputs=[image_prompt, prompt, negative_prompt, style, num_steps, guidance_scale, controlnet_conditioning_scale],
outputs=[image_prompt_processed],
api_name="preprocess_image"
)
generate_btn.click(
get_seed,
inputs=[randomize_seed, seed],
outputs=[seed],
).then(
image_to_3d,
inputs=[image_prompt_processed, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
outputs=[output_buf, video_output],
api_name="image_to_3d"
)
generate_btn.click(
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
outputs=[extract_glb_btn, extract_gs_btn],
)
video_output.clear(
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
outputs=[extract_glb_btn, extract_gs_btn],
)
extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, download_glb],
api_name="extract_glb"
)
extract_glb_btn.click(
lambda: gr.Button(interactive=True),
outputs=[download_glb]
)
extract_gs_btn.click(
extract_gaussian,
inputs=[output_buf],
outputs=[model_output, download_gs],
api_name="extract_gaussian"
)
extract_gs_btn.click(
lambda: gr.Button(interactive=True),
outputs=[download_gs]
)
model_output.clear(
lambda: gr.Button(interactive=False),
outputs=[download_glb],
)
if __name__ == "__main__":
pipeline = TrellisImageTo3DPipeline.from_pretrained("cavargas10/TRELLIS")
pipeline.cuda()
device = "cuda" if torch.cuda.is_available() else "cpu"
controlnet = ControlNetModel.from_pretrained("xinsir/controlnet-scribble-sdxl-1.0", torch_dtype=torch.float16)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe_control = StableDiffusionXLControlNetPipeline.from_pretrained("sd-community/sdxl-flash", controlnet=controlnet, vae=vae, torch_dtype=torch.float16)
pipe_control.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_control.scheduler.config)
pipe_control.to(device)
try:
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
except:
pass
demo.launch(show_error=True) |