Pujan Neupane
Project : pushing all the files to hugging face
e9f0d54
### **FastAPI AI**
This FastAPI app loads a GPT-2 model, tokenizes input text, classifies it, and returns whether the text is AI-generated or human-written.
### **install Dependencies**
```bash
pip install -r requirements.txt
```
This command installs all the dependencies listed in the `requirements.txt` file. It ensures that your environment has the required packages to run the project smoothly.
**NOTE: IF YOU HAVE DONE ANY CHANGES DON'NT FORGOT TO PUT IT IN THE REQUIREMENTS.TXT USING `bash pip freeze > requirements.txt `**
---
### **Functions**
1. **`load_model()`**
Loads the GPT-2 model and tokenizer from specified paths.
2. **`lifespan()`**
Manages the app's lifecycle: loads the model at startup and handles cleanup on shutdown.
3. **`classify_text_sync()`**
Synchronously tokenizes input text and classifies it using the GPT-2 model. Returns the classification and perplexity.
4. **`classify_text()`**
Asynchronously executes `classify_text_sync()` in a thread pool to ensure non-blocking processing.
5. **`analyze_text()`**
**POST** endpoint: accepts text input, classifies it using `classify_text()`, and returns the result with perplexity.
6. **`health_check()`**
**GET** endpoint: simple health check to confirm the API is running.
---
### **Code Overview**
```python
executor = ThreadPoolExecutor(max_workers=2)
```
- **`ThreadPoolExecutor(max_workers=2)`** limits the number of concurrent threads (tasks) per worker process to 2 for text classification. This helps control resource usage and prevent overloading the server.
---
### **Running and Load Balancing:**
To run the app in production with load balancing:
```bash
uvicorn app:app --host 0.0.0.0 --port 8000 --workers 4
```
This command launches the FastAPI app with **4 worker processes**, allowing it to handle multiple requests concurrently.
### **Concurrency Explained:**
1. **`ThreadPoolExecutor(max_workers=20)`**
- Controls the **number of threads** within a **single worker** process.
- Allows up to 20 tasks (text classification requests) to be handled simultaneously per worker, improving responsiveness for I/O-bound tasks.
2. **`--workers 4` in Uvicorn**
- Spawns **4 independent worker processes** to handle incoming HTTP requests.
- Each worker can independently handle multiple tasks, increasing the app's ability to process concurrent requests in parallel.
### **How They Relate:**
- **Uvicorn’s `--workers`** defines how many worker processes the server will run.
- **`ThreadPoolExecutor`** limits how many tasks (threads) each worker can process concurrently.
For example, with **4 workers** and **20 threads per worker**, the server can handle **80 tasks concurrently**. This provides scalable and efficient processing, balancing the load across multiple workers and threads.
### **Endpoints**
#### 1. **`/analyze`**
- **Method:** `POST`
- **Description:** Classifies whether the text is AI-generated or human-written.
- **Request:**
```json
{ "text": "sample text" }
```
- **Response:**
```json
{ "result": "AI-generated", "perplexity": 55.67 }
```
#### 2. **`/health`**
- **Method:** `GET`
- **Description:** Returns the status of the API.
- **Response:**
```json
{ "status": "ok" }
```
---
### **Running the API**
Start the server with:
```bash
uvicorn app:app --host 0.0.0.0 --port 8000 --workers 4
```
---
### **πŸ§ͺ Testing the API**
You can test the FastAPI endpoint using `curl` like this:
```bash
curl -X POST http://127.0.0.1:8000/analyze \
-H "Authorization: Bearer HelloThere" \
-H "Content-Type: application/json" \
-d '{"text": "This is a sample sentence for analysis."}'
```
- The `-H "Authorization: Bearer HelloThere"` part is used to simulate the **handshake**.
- FastAPI checks this token against the one loaded from the `.env` file.
- If the token matches, the request is accepted and processed.
- Otherwise, it responds with a `403 Unauthorized` error.
---
### **API Documentation**
- **Swagger UI:** `http://127.0.0.1:8000/docs` -> `/docs`
- **ReDoc:** `http://127.0.0.1:8000/redoc` -> `/redoc`
### **πŸ” Handshake Mechanism**
In this part, we're implementing a simple handshake to verify that the request is coming from a trusted source (e.g., our NestJS server). Here's how it works:
- We load a secret token from the `.env` file.
- When a request is made to the FastAPI server, we extract the `Authorization` header and compare it with our expected secret token.
- If the token does **not** match, we immediately return a **403 Forbidden** response with the message `"Unauthorized"`.
- If the token **does** match, we allow the request to proceed to the next step.
The verification function looks like this:
```python
def verify_token(auth: str):
if auth != f"Bearer {EXPECTED_TOKEN}":
raise HTTPException(status_code=403, detail="Unauthorized")
```
This provides a basic but effective layer of security to prevent unauthorized access to the API.
### **Implement it with NEST.js**
NOTE: Make an micro service in NEST.JS and implement it there and call it from app.controller.ts
in fastapi.service.ts file what we have done is
### Project Structure
```files
nestjs-fastapi-bridge/
β”œβ”€β”€ src/
β”‚ β”œβ”€β”€ app.controller.ts
β”‚ β”œβ”€β”€ app.module.ts
β”‚ └── fastapi.service.ts
β”œβ”€β”€ .env
```
---
### Step-by-Step Setup
#### 1. `.env`
Create a `.env` file at the root with the following:
```environment
FASTAPI_BASE_URL=http://localhost:8000
SECRET_TOKEN="HelloThere"
```
#### 2. `fastapi.service.ts`
```javascript
// src/fastapi.service.ts
import { Injectable } from "@nestjs/common";
import { HttpService } from "@nestjs/axios";
import { ConfigService } from "@nestjs/config";
import { firstValueFrom } from "rxjs";
@Injectable()
export class FastAPIService {
constructor(
private http: HttpService,
private config: ConfigService,
) {}
async analyzeText(text: string) {
const url = `${this.config.get("FASTAPI_BASE_URL")}/analyze`;
const token = this.config.get("SECRET_TOKEN");
const response = await firstValueFrom(
this.http.post(
url,
{ text },
{
headers: {
Authorization: `Bearer ${token}`,
},
},
),
);
return response.data;
}
}
```
#### 3. `app.module.ts`
```javascript
// src/app.module.ts
import { Module } from "@nestjs/common";
import { ConfigModule } from "@nestjs/config";
import { HttpModule } from "@nestjs/axios";
import { AppController } from "./app.controller";
import { FastAPIService } from "./fastapi.service";
@Module({
imports: [ConfigModule.forRoot(), HttpModule],
controllers: [AppController],
providers: [FastAPIService],
})
export class AppModule {}
```
---
#### 4. `app.controller.ts`
```javascript
// src/app.controller.ts
import { Body, Controller, Post, Get, Query } from '@nestjs/common';
import { FastAPIService } from './fastapi.service';
@Controller()
export class AppController {
constructor(private readonly fastapiService: FastAPIService) {}
@Post('analyze-text')
async callFastAPI(@Body('text') text: string) {
return this.fastapiService.analyzeText(text);
}
@Get()
getHello(): string {
return 'NestJS is connected to FastAPI ';
}
}
```
### πŸš€ How to Run
Run the server of flask and nest.js:
- for nest.js
```bash
npm run start
```
- for Fastapi
```bash
uvicorn app:app --reload
```
Make sure your FastAPI service is running at `http://localhost:8000`.
### Test with CURL
```bash
curl -X POST http://localhost:3000/analyze-text \
-H 'Content-Type: application/json' \
-d '{"text": "This is a test input"}'
```