Spaces:
Running
Running
import torch | |
from .model_loader import get_model_tokenizer | |
import torch.nn.functional as F | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
def classify_text(text: str): | |
model, tokenizer = get_model_tokenizer() | |
inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=512) | |
inputs = {k: v.to(device) for k, v in inputs.items()} | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs if isinstance(outputs, torch.Tensor) else outputs.logits | |
probs = F.softmax(logits, dim=1) | |
pred = torch.argmax(probs, dim=1).item() | |
prob_percent = probs[0][pred].item() * 100 | |
return {"label": "Human" if pred == 0 else "AI", "confidence": round(prob_percent, 2)} | |