import torch from .model_loader import get_model_tokenizer import torch.nn.functional as F device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def classify_text(text: str): model, tokenizer = get_model_tokenizer() inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=512) inputs = {k: v.to(device) for k, v in inputs.items()} with torch.no_grad(): outputs = model(**inputs) logits = outputs if isinstance(outputs, torch.Tensor) else outputs.logits probs = F.softmax(logits, dim=1) pred = torch.argmax(probs, dim=1).item() prob_percent = probs[0][pred].item() * 100 return {"label": "Human" if pred == 0 else "AI", "confidence": round(prob_percent, 2)}