File size: 4,647 Bytes
4fee431
1140ed3
 
4fee431
 
 
1140ed3
 
4fee431
 
 
1140ed3
 
 
 
 
 
4fee431
 
 
 
 
 
 
 
 
 
 
1140ed3
4fee431
 
 
 
 
 
1140ed3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fee431
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import asyncio
from io import BytesIO
from fastapi import HTTPException, UploadFile, status, Depends
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
import os
from features.nepali_text_classifier.inferencer import classify_text
from  features.nepali_text_classifier.preprocess import *
import re

security = HTTPBearer()

def contains_english(text: str) -> bool:
    # Remove escape characters
    cleaned = text.replace("\n", "").replace("\t", "")
    return bool(re.search(r'[a-zA-Z]', cleaned))


async def verify_token(credentials: HTTPAuthorizationCredentials = Depends(security)):
    token = credentials.credentials
    expected_token = os.getenv("MY_SECRET_TOKEN")
    if token != expected_token:
        raise HTTPException(
            status_code=status.HTTP_403_FORBIDDEN,
            detail="Invalid or expired token"
        )
    return token

async def nepali_text_analysis(text: str):
    end_symbol_for_NP_text(text)
    words = text.split()
    if len(words) < 10:
        raise HTTPException(status_code=400, detail="Text must contain at least 10 words")
    if len(text) > 10000:
        raise HTTPException(status_code=413, detail="Text must be less than 10,000 characters")

    result = await asyncio.to_thread(classify_text, text)

    return result


#Extract text form uploaded files(.docx,.pdf,.txt)
async def extract_file_contents(file:UploadFile)-> str:
    content = await file.read()
    file_stream = BytesIO(content)
    if file.content_type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
        return parse_docx(file_stream)
    elif file.content_type =="application/pdf":
        return parse_pdf(file_stream)
    elif file.content_type =="text/plain":
        return parse_txt(file_stream)
    else:
        raise HTTPException(status_code=415,detail="Invalid file type. Only .docx,.pdf and .txt are allowed")

async def handle_file_upload(file: UploadFile):
    try:
        file_contents = await extract_file_contents(file)
        end_symbol_for_NP_text(file_contents)
        if len(file_contents) > 10000:
            raise HTTPException(status_code=413, detail="Text must be less than 10,000 characters")

        cleaned_text = file_contents.replace("\n", " ").replace("\t", " ").strip()
        if not cleaned_text:
            raise HTTPException(status_code=404, detail="The file is empty or only contains whitespace.")
        
        result = await asyncio.to_thread(classify_text, cleaned_text)
        return result
    except Exception as e:
        logging.error(f"Error processing file: {e}")
        raise HTTPException(status_code=500, detail="Error processing the file")



async def handle_sentence_level_analysis(text: str):
    text = text.strip()
    if len(text) > 10000:
        raise HTTPException(status_code=413, detail="Text must be less than 10,000 characters")
    
    end_symbol_for_NP_text(text)

    # Split text into sentences
    sentences = [s.strip() + "।" for s in text.split("।") if s.strip()]

    results = []
    for sentence in sentences:
        end_symbol_for_NP_text(sentence)
        result = await asyncio.to_thread(classify_text, sentence)
        results.append({
            "text": sentence,
            "result": result["label"],
            "likelihood": result["confidence"]
        })

    return {"analysis": results}


async def handle_file_sentence(file:UploadFile):
    try:
        file_contents = await extract_file_contents(file)
        if len(file_contents) > 10000:
            raise HTTPException(status_code=413, detail="Text must be less than 10,000 characters")

        cleaned_text = file_contents.replace("\n", " ").replace("\t", " ").strip()
        if not cleaned_text:
            raise HTTPException(status_code=404, detail="The file is empty or only contains whitespace.")
        # Ensure text ends with danda so last sentence is included

        # Split text into sentences
        sentences = [s.strip() + "।" for s in cleaned_text.split("।") if s.strip()]

        results = []
        for sentence in sentences:
            end_symbol_for_NP_text(sentence)

            result = await asyncio.to_thread(classify_text, sentence)
            results.append({
                "text": sentence,
                "result": result["label"],
                "likelihood": result["confidence"]
            })

        return {"analysis": results}

    except Exception as e:
        logging.error(f"Error processing file: {e}")
        raise HTTPException(status_code=500, detail="Error processing the file")


def classify(text: str):
    return classify_text(text)