Pujan-Dev commited on
Commit
4fee431
·
1 Parent(s): 0b3d6d9

feat:added basic

Browse files
README.md CHANGED
@@ -5,4 +5,5 @@ colorFrom: yellow
5
  colorTo: blue
6
  sdk: docker
7
  pinned: false
8
- ---
 
 
5
  colorTo: blue
6
  sdk: docker
7
  pinned: false
8
+ ---
9
+
app.py CHANGED
@@ -5,6 +5,7 @@ from slowapi.errors import RateLimitExceeded
5
  from slowapi.util import get_remote_address
6
  from fastapi.responses import JSONResponse
7
  from features.text_classifier.routes import router as text_classifier_router
 
8
  from config import ACCESS_RATE
9
  import requests
10
  limiter = Limiter(key_func=get_remote_address, default_limits=[ACCESS_RATE])
@@ -25,7 +26,7 @@ app.add_middleware(SlowAPIMiddleware)
25
 
26
  # Include your routes
27
  app.include_router(text_classifier_router, prefix="/text")
28
-
29
  @app.get("/")
30
  @limiter.limit(ACCESS_RATE)
31
  async def root(request: Request):
 
5
  from slowapi.util import get_remote_address
6
  from fastapi.responses import JSONResponse
7
  from features.text_classifier.routes import router as text_classifier_router
8
+ from features.nepali_text_classifier.routes import router as nepali_text_classifier_router
9
  from config import ACCESS_RATE
10
  import requests
11
  limiter = Limiter(key_func=get_remote_address, default_limits=[ACCESS_RATE])
 
26
 
27
  # Include your routes
28
  app.include_router(text_classifier_router, prefix="/text")
29
+ app.include_router(nepali_text_classifier_router,prefix="/NP")
30
  @app.get("/")
31
  @limiter.limit(ACCESS_RATE)
32
  async def root(request: Request):
__init__.py → features/nepali_text_classifier/__init__.py RENAMED
File without changes
features/nepali_text_classifier/controller.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import asyncio
2
+ from fastapi import HTTPException, status, Depends
3
+ from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
4
+ import os
5
+
6
+ from features.nepali_text_classifier.inferencer import classify_text
7
+
8
+ security = HTTPBearer()
9
+
10
+ async def verify_token(credentials: HTTPAuthorizationCredentials = Depends(security)):
11
+ token = credentials.credentials
12
+ expected_token = os.getenv("MY_SECRET_TOKEN")
13
+ if token != expected_token:
14
+ raise HTTPException(
15
+ status_code=status.HTTP_403_FORBIDDEN,
16
+ detail="Invalid or expired token"
17
+ )
18
+ return token
19
+
20
+ async def nepali_text_analysis(text: str):
21
+ # Fix: split once and reuse
22
+ words = text.split()
23
+ if len(words) < 10:
24
+ raise HTTPException(status_code=400, detail="Text must contain at least 10 words")
25
+ if len(text) > 10000:
26
+ raise HTTPException(status_code=413, detail="Text must be less than 10,000 characters")
27
+
28
+ label, confidence = await asyncio.to_thread(classify_text, text)
29
+ return {
30
+ "result": label,
31
+ "ai_likelihood": confidence
32
+ }
33
+
34
+ def classify(text: str):
35
+ return classify_text(text)
36
+
features/nepali_text_classifier/inferencer.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from .model_loader import get_model_tokenizer
3
+ import torch.nn.functional as F
4
+
5
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
6
+
7
+
8
+ def classify_text(text: str):
9
+ model, tokenizer = get_model_tokenizer()
10
+ inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=512)
11
+ inputs = {k: v.to(device) for k, v in inputs.items()}
12
+
13
+ with torch.no_grad():
14
+ outputs = model(**inputs)
15
+ logits = outputs if isinstance(outputs, torch.Tensor) else outputs.logits
16
+ probs = F.softmax(logits, dim=1)
17
+ pred = torch.argmax(probs, dim=1).item()
18
+ prob_percent = probs[0][pred].item() * 100
19
+
20
+ return {"label": "Human" if pred == 0 else "AI", "confidence": round(prob_percent, 2)}
21
+
features/nepali_text_classifier/model_loader.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import shutil
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.nn.functional as F
6
+ import logging
7
+ from huggingface_hub import snapshot_download
8
+ from transformers import AutoTokenizer, AutoModel
9
+
10
+ # Configs
11
+ REPO_ID = "Pujan-Dev/Nepali-AI-VS-HUMAN"
12
+ BASE_DIR = "./np_text_model"
13
+ TOKENIZER_DIR = os.path.join(BASE_DIR, "classifier") # <- update this to match your uploaded folder
14
+ WEIGHTS_PATH = os.path.join(BASE_DIR, "model_95_acc.pth") # <- change to match actual uploaded weight
15
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
16
+
17
+ # Define model class
18
+ class XLMRClassifier(nn.Module):
19
+ def __init__(self):
20
+ super(XLMRClassifier, self).__init__()
21
+ self.bert = AutoModel.from_pretrained("xlm-roberta-base")
22
+ self.classifier = nn.Linear(self.bert.config.hidden_size, 2)
23
+
24
+ def forward(self, input_ids, attention_mask):
25
+ outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
26
+ cls_output = outputs.last_hidden_state[:, 0, :]
27
+ return self.classifier(cls_output)
28
+
29
+ # Globals for caching
30
+ _model = None
31
+ _tokenizer = None
32
+
33
+ def download_model_repo():
34
+ if os.path.exists(BASE_DIR) and os.path.isdir(BASE_DIR):
35
+ logging.info("Model already downloaded.")
36
+ return
37
+ snapshot_path = snapshot_download(repo_id=REPO_ID)
38
+ os.makedirs(BASE_DIR, exist_ok=True)
39
+ shutil.copytree(snapshot_path, BASE_DIR, dirs_exist_ok=True)
40
+
41
+ def load_model():
42
+ download_model_repo()
43
+ tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_DIR)
44
+ model = XLMRClassifier().to(device)
45
+ model.load_state_dict(torch.load(WEIGHTS_PATH, map_location=device))
46
+ model.eval()
47
+ return model, tokenizer
48
+
49
+ def get_model_tokenizer():
50
+ global _model, _tokenizer
51
+ if _model is None or _tokenizer is None:
52
+ _model, _tokenizer = load_model()
53
+ return _model, _tokenizer
54
+
features/nepali_text_classifier/preprocess.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import fitz # PyMuPDF
2
+ import docx
3
+ from io import BytesIO
4
+ import logging
5
+ from fastapi import HTTPException
6
+
7
+
8
+ def parse_docx(file: BytesIO):
9
+ doc = docx.Document(file)
10
+ text = ""
11
+ for para in doc.paragraphs:
12
+ text += para.text + "\n"
13
+ return text
14
+
15
+
16
+ def parse_pdf(file: BytesIO):
17
+ try:
18
+ doc = fitz.open(stream=file, filetype="pdf")
19
+ text = ""
20
+ for page_num in range(doc.page_count):
21
+ page = doc.load_page(page_num)
22
+ text += page.get_text()
23
+ return text
24
+ except Exception as e:
25
+ logging.error(f"Error while processing PDF: {str(e)}")
26
+ raise HTTPException(
27
+ status_code=500, detail="Error processing PDF file")
28
+
29
+
30
+ def parse_txt(file: BytesIO):
31
+ return file.read().decode("utf-8")
32
+
features/nepali_text_classifier/routes.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from slowapi import Limiter
2
+ from config import ACCESS_RATE
3
+ from .controller import nepali_text_analysis
4
+ from .inferencer import classify_text
5
+ from fastapi import APIRouter, Request, Depends, HTTPException
6
+ from fastapi.security import HTTPBearer
7
+ from slowapi import Limiter
8
+ from slowapi.util import get_remote_address
9
+ from pydantic import BaseModel
10
+ router = APIRouter()
11
+ limiter = Limiter(key_func=get_remote_address)
12
+ security = HTTPBearer()
13
+
14
+ # Input schema
15
+ class TextInput(BaseModel):
16
+ text: str
17
+
18
+ @router.post("/analyse")
19
+ @limiter.limit(ACCESS_RATE)
20
+ async def analyse(request: Request, data: TextInput, token: str = Depends(security)):
21
+ # Token is available as `token.credentials`, add validation if needed
22
+ result = classify_text(data.text)
23
+ return result
24
+
25
+ @router.get("/health")
26
+ @limiter.limit(ACCESS_RATE)
27
+ def health(request: Request):
28
+ return {"status": "ok"}
29
+
features/text_classifier/controller.py CHANGED
@@ -60,7 +60,7 @@ async def handle_file_upload(file: UploadFile):
60
  try:
61
  file_contents = await extract_file_contents(file)
62
  if len(file_contents) > 10000:
63
- return {"message": "File contains more than 10,000 characters."}
64
 
65
  cleaned_text = file_contents.replace("\n", " ").replace("\t", " ").strip()
66
  if not cleaned_text:
@@ -87,7 +87,6 @@ async def handle_sentence_level_analysis(text: str):
87
  if len(text) > 10000:
88
  raise HTTPException(status_code=413, detail="Text must be less than 10,000 characters")
89
 
90
- # Use SpaCy for sentence splitting
91
  doc = nlp(text)
92
  sentences = [sent.text.strip() for sent in doc.sents]
93
 
@@ -108,7 +107,7 @@ async def handle_file_sentence(file: UploadFile):
108
  try:
109
  file_contents = await extract_file_contents(file)
110
  if len(file_contents) > 10000:
111
- return {"message": "File contains more than 10,000 characters."}
112
 
113
  cleaned_text = file_contents.replace("\n", " ").replace("\t", " ").strip()
114
  if not cleaned_text:
@@ -123,7 +122,6 @@ async def handle_file_sentence(file: UploadFile):
123
  logging.error(f"Error processing file: {e}")
124
  raise HTTPException(status_code=500, detail="Error processing the file")
125
 
126
- # Optional synchronous helper function
127
  def classify(text: str):
128
  return classify_text(text)
129
 
 
60
  try:
61
  file_contents = await extract_file_contents(file)
62
  if len(file_contents) > 10000:
63
+ raise HTTPException(status_code=413, detail="Text must be less than 10,000 characters")
64
 
65
  cleaned_text = file_contents.replace("\n", " ").replace("\t", " ").strip()
66
  if not cleaned_text:
 
87
  if len(text) > 10000:
88
  raise HTTPException(status_code=413, detail="Text must be less than 10,000 characters")
89
 
 
90
  doc = nlp(text)
91
  sentences = [sent.text.strip() for sent in doc.sents]
92
 
 
107
  try:
108
  file_contents = await extract_file_contents(file)
109
  if len(file_contents) > 10000:
110
+ raise HTTPException(status_code=413, detail="Text must be less than 10,000 characters")
111
 
112
  cleaned_text = file_contents.replace("\n", " ").replace("\t", " ").strip()
113
  if not cleaned_text:
 
122
  logging.error(f"Error processing file: {e}")
123
  raise HTTPException(status_code=500, detail="Error processing the file")
124
 
 
125
  def classify(text: str):
126
  return classify_text(text)
127
 
features/text_classifier/model_loader.py CHANGED
@@ -18,9 +18,9 @@ _model, _tokenizer = None, None
18
  def warmup():
19
  global _model, _tokenizer
20
  # Ensure punkt is available
21
-
22
  download_model_repo()
23
  _model, _tokenizer = load_model()
 
24
 
25
 
26
  def download_model_repo():
 
18
  def warmup():
19
  global _model, _tokenizer
20
  # Ensure punkt is available
 
21
  download_model_repo()
22
  _model, _tokenizer = load_model()
23
+ logging.info("Its ready")
24
 
25
 
26
  def download_model_repo():
np_text_model/.gitattributes ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ classifier/tokenizer.json filter=lfs diff=lfs merge=lfs -text
np_text_model/classifier/sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
np_text_model/classifier/special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
np_text_model/classifier/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
3
+ size 17082987
np_text_model/classifier/tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "model_max_length": 512,
51
+ "pad_token": "<pad>",
52
+ "sep_token": "</s>",
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }