langchain-HuggingGPT / hugginggpt /model_inference.py
camille-vanhoffelen
First working gradio app for langchain-HuggingGPT
b3d3593
import base64
import json
import logging
import random
from io import BytesIO
from typing import Any
import requests
from PIL import Image, ImageDraw
from langchain import LLMChain
from langchain.llms.base import BaseLLM
from langchain.prompts import load_prompt
from pydantic import BaseModel, Json
from hugginggpt.exceptions import ModelInferenceException, wrap_exceptions
from hugginggpt.huggingface_api import (HUGGINGFACE_INFERENCE_API_URL, get_hf_headers)
from hugginggpt.model_selection import Model
from hugginggpt.resources import (
audio_from_bytes,
encode_audio,
encode_image,
get_prompt_resource,
get_resource_url,
image_from_bytes,
load_image,
save_audio,
save_image,
)
from hugginggpt.task_parsing import Task
logger = logging.getLogger(__name__)
@wrap_exceptions(ModelInferenceException, "Error during model inference")
def infer(task: Task, model_id: str, llm: BaseLLM, session: requests.Session):
"""Execute a task either with LLM or huggingface inference API."""
if model_id == "openai":
return infer_openai(task=task, llm=llm)
else:
return infer_huggingface(task=task, model_id=model_id, session=session)
def infer_openai(task: Task, llm: BaseLLM):
logger.info("Starting OpenAI inference")
prompt_template = load_prompt(
get_prompt_resource("openai-model-inference-prompt.json")
)
llm_chain = LLMChain(prompt=prompt_template, llm=llm)
# Need to replace double quotes with single quotes for correct response generation
output = llm_chain.predict(
task=task.json(), task_name=task.task, args=task.args, stop=["<im_end>"]
)
result = {"generated text": output}
logger.debug(f"Inference result: {result}")
return result
def infer_huggingface(task: Task, model_id: str, session: requests.Session):
logger.info("Starting huggingface inference")
url = HUGGINGFACE_INFERENCE_API_URL + model_id
huggingface_task = create_huggingface_task(task=task)
data = huggingface_task.inference_inputs
headers = get_hf_headers()
response = session.post(url, headers=headers, data=data)
response.raise_for_status()
result = huggingface_task.parse_response(response)
logger.debug(f"Inference result: {result}")
return result
# NLP Tasks
# deepset/roberta-base-squad2 was removed from huggingface_models-metadata.jsonl because it is currently broken
# Example added to task-planning-examples.json compared to original paper
class QuestionAnswering:
def __init__(self, task: Task):
self.task = task
@property
def inference_inputs(self):
data = {
"inputs": {
"question": self.task.args["question"],
"context": self.task.args["context"]
if "context" in self.task.args
else "",
}
}
return json.dumps(data)
def parse_response(self, response):
return response.json()
# Example added to task-planning-examples.json compared to original paper
class SentenceSimilarity:
def __init__(self, task: Task):
self.task = task
@property
def inference_inputs(self):
data = {
"inputs": {
"source_sentence": self.task.args["text1"],
"sentences": [self.task.args["text2"]],
}
}
# Using string to bypass requests' form encoding
return json.dumps(data)
def parse_response(self, response):
return response.json()
# Example added to task-planning-examples.json compared to original paper
class TextClassification:
def __init__(self, task: Task):
self.task = task
@property
def inference_inputs(self):
return self.task.args["text"]
# return {"inputs": self.task.args["text"]}
def parse_response(self, response):
return response.json()
class TokenClassification:
def __init__(self, task: Task):
self.task = task
@property
def inference_inputs(self):
return self.task.args["text"]
def parse_response(self, response):
return response.json()
# CV Tasks
class VisualQuestionAnswering:
def __init__(self, task: Task):
self.task = task
@property
def inference_inputs(self):
img_data = encode_image(self.task.args["image"])
img_base64 = base64.b64encode(img_data).decode("utf-8")
data = {
"inputs": {
"question": self.task.args["text"],
"image": img_base64,
}
}
return json.dumps(data)
def parse_response(self, response):
return response.json()
class DocumentQuestionAnswering:
def __init__(self, task: Task):
self.task = task
@property
def inference_inputs(self):
img_data = encode_image(self.task.args["image"])
img_base64 = base64.b64encode(img_data).decode("utf-8")
data = {
"inputs": {
"question": self.task.args["text"],
"image": img_base64,
}
}
return json.dumps(data)
def parse_response(self, response):
return response.json()
class TextToImage:
def __init__(self, task: Task):
self.task = task
@property
def inference_inputs(self):
return self.task.args["text"]
def parse_response(self, response):
image = image_from_bytes(response.content)
path = save_image(image)
return {"generated image": path}
class ImageSegmentation:
def __init__(self, task: Task):
self.task = task
@property
def inference_inputs(self):
return encode_image(self.task.args["image"])
def parse_response(self, response):
image_url = get_resource_url(self.task.args["image"])
image = load_image(image_url)
colors = []
for i in range(len(response.json())):
colors.append(
(
random.randint(100, 255),
random.randint(100, 255),
random.randint(100, 255),
155,
)
)
predicted_results = []
for i, pred in enumerate(response.json()):
mask = pred.pop("mask").encode("utf-8")
mask = base64.b64decode(mask)
mask = Image.open(BytesIO(mask), mode="r")
mask = mask.convert("L")
layer = Image.new("RGBA", mask.size, colors[i])
image.paste(layer, (0, 0), mask)
predicted_results.append(pred)
path = save_image(image)
return {
"generated image with segmentation mask": path,
"predicted": predicted_results,
}
# Not yet implemented in huggingface inference API
class ImageToImage:
def __init__(self, task: Task):
self.task = task
@property
def inference_inputs(self):
img_data = encode_image(self.task.args["image"])
img_base64 = base64.b64encode(img_data).decode("utf-8")
data = {
"inputs": {
"image": img_base64,
}
}
if "text" in self.task.args:
data["inputs"]["prompt"] = self.task.args["text"]
return json.dumps(data)
def parse_response(self, response):
image = image_from_bytes(response.content)
path = save_image(image)
return {"generated image": path}
class ObjectDetection:
def __init__(self, task: Task):
self.task = task
@property
def inference_inputs(self):
return encode_image(self.task.args["image"])
def parse_response(self, response):
image_url = get_resource_url(self.task.args["image"])
image = load_image(image_url)
draw = ImageDraw.Draw(image)
labels = list(item["label"] for item in response.json())
color_map = {}
for label in labels:
if label not in color_map:
color_map[label] = (
random.randint(0, 255),
random.randint(0, 100),
random.randint(0, 255),
)
for item in response.json():
box = item["box"]
draw.rectangle(
((box["xmin"], box["ymin"]), (box["xmax"], box["ymax"])),
outline=color_map[item["label"]],
width=2,
)
draw.text(
(box["xmin"] + 5, box["ymin"] - 15),
item["label"],
fill=color_map[item["label"]],
)
path = save_image(image)
return {
"generated image with predicted box": path,
"predicted": response.json(),
}
# Example added to task-planning-examples.json compared to original paper
class ImageClassification:
def __init__(self, task: Task):
self.task = task
@property
def inference_inputs(self):
return encode_image(self.task.args["image"])
def parse_response(self, response):
return response.json()
class ImageToText:
def __init__(self, task: Task):
self.task = task
@property
def inference_inputs(self):
return encode_image(self.task.args["image"])
def parse_response(self, response):
return {"generated text": response.json()[0].get("generated_text", "")}
# Audio Tasks
class TextToSpeech:
def __init__(self, task: Task):
self.task = task
@property
def inference_inputs(self):
return self.task.args["text"]
def parse_response(self, response):
audio = audio_from_bytes(response.content)
path = save_audio(audio)
return {"generated audio": path}
class AudioToAudio:
def __init__(self, task: Task):
self.task = task
@property
def inference_inputs(self):
return encode_audio(self.task.args["audio"])
def parse_response(self, response):
result = response.json()
blob = result[0].items()["blob"]
content = base64.b64decode(blob.encode("utf-8"))
audio = audio_from_bytes(content)
path = save_audio(audio)
return {"generated audio": path}
class AutomaticSpeechRecognition:
def __init__(self, task: Task):
self.task = task
@property
def inference_inputs(self):
return encode_audio(self.task.args["audio"])
def parse_response(self, response):
return response.json()
class AudioClassification:
def __init__(self, task: Task):
self.task = task
@property
def inference_inputs(self):
return encode_audio(self.task.args["audio"])
def parse_response(self, response):
return response.json()
HUGGINGFACE_TASKS = {
"question-answering": QuestionAnswering,
"sentence-similarity": SentenceSimilarity,
"text-classification": TextClassification,
"token-classification": TokenClassification,
"visual-question-answering": VisualQuestionAnswering,
"document-question-answering": DocumentQuestionAnswering,
"text-to-image": TextToImage,
"image-segmentation": ImageSegmentation,
"image-to-image": ImageToImage,
"object-detection": ObjectDetection,
"image-classification": ImageClassification,
"image-to-text": ImageToText,
"text-to-speech": TextToSpeech,
"automatic-speech-recognition": AutomaticSpeechRecognition,
"audio-to-audio": AudioToAudio,
"audio-classification": AudioClassification,
}
def create_huggingface_task(task: Task):
if task.task in HUGGINGFACE_TASKS:
return HUGGINGFACE_TASKS[task.task](task)
else:
raise NotImplementedError(f"Task {task.task} not supported")
class TaskSummary(BaseModel):
task: Task
inference_result: Json[Any]
model: Model