Spaces:
Runtime error
Runtime error
File size: 11,793 Bytes
b3d3593 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
import base64
import json
import logging
import random
from io import BytesIO
from typing import Any
import requests
from PIL import Image, ImageDraw
from langchain import LLMChain
from langchain.llms.base import BaseLLM
from langchain.prompts import load_prompt
from pydantic import BaseModel, Json
from hugginggpt.exceptions import ModelInferenceException, wrap_exceptions
from hugginggpt.huggingface_api import (HUGGINGFACE_INFERENCE_API_URL, get_hf_headers)
from hugginggpt.model_selection import Model
from hugginggpt.resources import (
audio_from_bytes,
encode_audio,
encode_image,
get_prompt_resource,
get_resource_url,
image_from_bytes,
load_image,
save_audio,
save_image,
)
from hugginggpt.task_parsing import Task
logger = logging.getLogger(__name__)
@wrap_exceptions(ModelInferenceException, "Error during model inference")
def infer(task: Task, model_id: str, llm: BaseLLM, session: requests.Session):
"""Execute a task either with LLM or huggingface inference API."""
if model_id == "openai":
return infer_openai(task=task, llm=llm)
else:
return infer_huggingface(task=task, model_id=model_id, session=session)
def infer_openai(task: Task, llm: BaseLLM):
logger.info("Starting OpenAI inference")
prompt_template = load_prompt(
get_prompt_resource("openai-model-inference-prompt.json")
)
llm_chain = LLMChain(prompt=prompt_template, llm=llm)
# Need to replace double quotes with single quotes for correct response generation
output = llm_chain.predict(
task=task.json(), task_name=task.task, args=task.args, stop=["<im_end>"]
)
result = {"generated text": output}
logger.debug(f"Inference result: {result}")
return result
def infer_huggingface(task: Task, model_id: str, session: requests.Session):
logger.info("Starting huggingface inference")
url = HUGGINGFACE_INFERENCE_API_URL + model_id
huggingface_task = create_huggingface_task(task=task)
data = huggingface_task.inference_inputs
headers = get_hf_headers()
response = session.post(url, headers=headers, data=data)
response.raise_for_status()
result = huggingface_task.parse_response(response)
logger.debug(f"Inference result: {result}")
return result
# NLP Tasks
# deepset/roberta-base-squad2 was removed from huggingface_models-metadata.jsonl because it is currently broken
# Example added to task-planning-examples.json compared to original paper
class QuestionAnswering:
def __init__(self, task: Task):
self.task = task
@property
def inference_inputs(self):
data = {
"inputs": {
"question": self.task.args["question"],
"context": self.task.args["context"]
if "context" in self.task.args
else "",
}
}
return json.dumps(data)
def parse_response(self, response):
return response.json()
# Example added to task-planning-examples.json compared to original paper
class SentenceSimilarity:
def __init__(self, task: Task):
self.task = task
@property
def inference_inputs(self):
data = {
"inputs": {
"source_sentence": self.task.args["text1"],
"sentences": [self.task.args["text2"]],
}
}
# Using string to bypass requests' form encoding
return json.dumps(data)
def parse_response(self, response):
return response.json()
# Example added to task-planning-examples.json compared to original paper
class TextClassification:
def __init__(self, task: Task):
self.task = task
@property
def inference_inputs(self):
return self.task.args["text"]
# return {"inputs": self.task.args["text"]}
def parse_response(self, response):
return response.json()
class TokenClassification:
def __init__(self, task: Task):
self.task = task
@property
def inference_inputs(self):
return self.task.args["text"]
def parse_response(self, response):
return response.json()
# CV Tasks
class VisualQuestionAnswering:
def __init__(self, task: Task):
self.task = task
@property
def inference_inputs(self):
img_data = encode_image(self.task.args["image"])
img_base64 = base64.b64encode(img_data).decode("utf-8")
data = {
"inputs": {
"question": self.task.args["text"],
"image": img_base64,
}
}
return json.dumps(data)
def parse_response(self, response):
return response.json()
class DocumentQuestionAnswering:
def __init__(self, task: Task):
self.task = task
@property
def inference_inputs(self):
img_data = encode_image(self.task.args["image"])
img_base64 = base64.b64encode(img_data).decode("utf-8")
data = {
"inputs": {
"question": self.task.args["text"],
"image": img_base64,
}
}
return json.dumps(data)
def parse_response(self, response):
return response.json()
class TextToImage:
def __init__(self, task: Task):
self.task = task
@property
def inference_inputs(self):
return self.task.args["text"]
def parse_response(self, response):
image = image_from_bytes(response.content)
path = save_image(image)
return {"generated image": path}
class ImageSegmentation:
def __init__(self, task: Task):
self.task = task
@property
def inference_inputs(self):
return encode_image(self.task.args["image"])
def parse_response(self, response):
image_url = get_resource_url(self.task.args["image"])
image = load_image(image_url)
colors = []
for i in range(len(response.json())):
colors.append(
(
random.randint(100, 255),
random.randint(100, 255),
random.randint(100, 255),
155,
)
)
predicted_results = []
for i, pred in enumerate(response.json()):
mask = pred.pop("mask").encode("utf-8")
mask = base64.b64decode(mask)
mask = Image.open(BytesIO(mask), mode="r")
mask = mask.convert("L")
layer = Image.new("RGBA", mask.size, colors[i])
image.paste(layer, (0, 0), mask)
predicted_results.append(pred)
path = save_image(image)
return {
"generated image with segmentation mask": path,
"predicted": predicted_results,
}
# Not yet implemented in huggingface inference API
class ImageToImage:
def __init__(self, task: Task):
self.task = task
@property
def inference_inputs(self):
img_data = encode_image(self.task.args["image"])
img_base64 = base64.b64encode(img_data).decode("utf-8")
data = {
"inputs": {
"image": img_base64,
}
}
if "text" in self.task.args:
data["inputs"]["prompt"] = self.task.args["text"]
return json.dumps(data)
def parse_response(self, response):
image = image_from_bytes(response.content)
path = save_image(image)
return {"generated image": path}
class ObjectDetection:
def __init__(self, task: Task):
self.task = task
@property
def inference_inputs(self):
return encode_image(self.task.args["image"])
def parse_response(self, response):
image_url = get_resource_url(self.task.args["image"])
image = load_image(image_url)
draw = ImageDraw.Draw(image)
labels = list(item["label"] for item in response.json())
color_map = {}
for label in labels:
if label not in color_map:
color_map[label] = (
random.randint(0, 255),
random.randint(0, 100),
random.randint(0, 255),
)
for item in response.json():
box = item["box"]
draw.rectangle(
((box["xmin"], box["ymin"]), (box["xmax"], box["ymax"])),
outline=color_map[item["label"]],
width=2,
)
draw.text(
(box["xmin"] + 5, box["ymin"] - 15),
item["label"],
fill=color_map[item["label"]],
)
path = save_image(image)
return {
"generated image with predicted box": path,
"predicted": response.json(),
}
# Example added to task-planning-examples.json compared to original paper
class ImageClassification:
def __init__(self, task: Task):
self.task = task
@property
def inference_inputs(self):
return encode_image(self.task.args["image"])
def parse_response(self, response):
return response.json()
class ImageToText:
def __init__(self, task: Task):
self.task = task
@property
def inference_inputs(self):
return encode_image(self.task.args["image"])
def parse_response(self, response):
return {"generated text": response.json()[0].get("generated_text", "")}
# Audio Tasks
class TextToSpeech:
def __init__(self, task: Task):
self.task = task
@property
def inference_inputs(self):
return self.task.args["text"]
def parse_response(self, response):
audio = audio_from_bytes(response.content)
path = save_audio(audio)
return {"generated audio": path}
class AudioToAudio:
def __init__(self, task: Task):
self.task = task
@property
def inference_inputs(self):
return encode_audio(self.task.args["audio"])
def parse_response(self, response):
result = response.json()
blob = result[0].items()["blob"]
content = base64.b64decode(blob.encode("utf-8"))
audio = audio_from_bytes(content)
path = save_audio(audio)
return {"generated audio": path}
class AutomaticSpeechRecognition:
def __init__(self, task: Task):
self.task = task
@property
def inference_inputs(self):
return encode_audio(self.task.args["audio"])
def parse_response(self, response):
return response.json()
class AudioClassification:
def __init__(self, task: Task):
self.task = task
@property
def inference_inputs(self):
return encode_audio(self.task.args["audio"])
def parse_response(self, response):
return response.json()
HUGGINGFACE_TASKS = {
"question-answering": QuestionAnswering,
"sentence-similarity": SentenceSimilarity,
"text-classification": TextClassification,
"token-classification": TokenClassification,
"visual-question-answering": VisualQuestionAnswering,
"document-question-answering": DocumentQuestionAnswering,
"text-to-image": TextToImage,
"image-segmentation": ImageSegmentation,
"image-to-image": ImageToImage,
"object-detection": ObjectDetection,
"image-classification": ImageClassification,
"image-to-text": ImageToText,
"text-to-speech": TextToSpeech,
"automatic-speech-recognition": AutomaticSpeechRecognition,
"audio-to-audio": AudioToAudio,
"audio-classification": AudioClassification,
}
def create_huggingface_task(task: Task):
if task.task in HUGGINGFACE_TASKS:
return HUGGINGFACE_TASKS[task.task](task)
else:
raise NotImplementedError(f"Task {task.task} not supported")
class TaskSummary(BaseModel):
task: Task
inference_result: Json[Any]
model: Model
|