Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,95 +1,82 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
3 |
-
from transformers import AutoModelForSequenceClassification
|
4 |
-
from PIL import Image
|
5 |
-
import pytesseract
|
6 |
-
import pdfplumber
|
7 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
|
12 |
-
# Bio_ClinicalBERT for text summarization
|
13 |
-
tokenizer_bert = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
|
14 |
-
model_bert = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn")
|
15 |
-
summarizer = pipeline("summarization", model=model_bert, tokenizer=tokenizer_bert, device=0 if torch.cuda.is_available() else -1)
|
16 |
|
17 |
-
|
18 |
-
|
|
|
|
|
19 |
|
20 |
-
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
def extract_text_from_image(image):
|
26 |
return pytesseract.image_to_string(image)
|
27 |
|
28 |
-
|
29 |
-
|
30 |
text = ""
|
31 |
-
|
32 |
-
|
33 |
-
text += page.extract_text() or ""
|
34 |
return text
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
#
|
39 |
-
|
40 |
-
|
41 |
-
# Use BART for classification insights
|
42 |
-
interpretation = classifier(
|
43 |
-
summarized_text,
|
44 |
-
candidate_labels=["normal", "abnormal", "urgent", "needs follow-up", "critical condition"],
|
45 |
-
multi_label=True
|
46 |
-
)
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
return {
|
55 |
-
"summary": summarized_text,
|
56 |
-
"interpretation": interpretation['labels'],
|
57 |
-
"recommendations": recommendations['labels']
|
58 |
-
}
|
59 |
-
|
60 |
-
# Streamlit UI
|
61 |
-
st.title("Medical Lab Report Analyzer with ClinicalBERT and BART")
|
62 |
-
st.write("Upload your medical lab report (PDF/Image) to get a summary and actionable insights.")
|
63 |
-
|
64 |
-
uploaded_file = st.file_uploader("Choose a PDF/Image file", type=["pdf", "png", "jpg", "jpeg"])
|
65 |
|
|
|
66 |
if uploaded_file:
|
67 |
file_type = uploaded_file.type
|
|
|
|
|
68 |
|
69 |
-
# Extract text based on file type
|
70 |
if file_type == "application/pdf":
|
71 |
-
with
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
77 |
|
78 |
-
# Analyze the extracted text
|
79 |
if extracted_text.strip():
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
# Display the results
|
84 |
-
st.subheader("Summary of the Report")
|
85 |
-
st.write(result['summary'])
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
st.write(
|
94 |
else:
|
95 |
-
st.error("No text
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
2 |
import torch
|
3 |
+
from transformers import VisionEncoderDecoderModel, AutoTokenizer, pipeline
|
4 |
+
from pdf2image import convert_from_path
|
5 |
+
import pytesseract
|
6 |
+
from PIL import Image
|
7 |
+
import os
|
8 |
+
import io
|
9 |
+
from typing import List, Tuple
|
10 |
|
11 |
+
# Initialize models and tokenizer
|
12 |
+
vision_model_name = "nlpconnect/vit-gpt2-image-captioning"
|
13 |
+
text_model_name = "peteparker456/medical_diagnosis_llama2"
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
# Load the vision and text models
|
16 |
+
vision_model = VisionEncoderDecoderModel.from_pretrained(vision_model_name)
|
17 |
+
vision_tokenizer = AutoTokenizer.from_pretrained(vision_model_name)
|
18 |
+
text_model = pipeline("text-generation", model=text_model_name)
|
19 |
|
20 |
+
pytesseract.pytesseract.tesseract_cmd = r'/usr/bin/tesseract' # Path to Tesseract executable
|
21 |
|
22 |
+
# Streamlit UI
|
23 |
+
st.title("Medical Lab Report Analyzer")
|
24 |
+
st.write(
|
25 |
+
"Upload an image or PDF file of a medical lab report to get an interpretation, actionable recommendations, and additional insights."
|
26 |
+
)
|
27 |
+
|
28 |
+
# Upload the image or PDF file
|
29 |
+
uploaded_file = st.file_uploader(
|
30 |
+
"Upload Image or PDF", type=["jpg", "jpeg", "png", "pdf"]
|
31 |
+
)
|
32 |
|
33 |
+
def extract_text_from_image(image: Image.Image) -> str:
|
|
|
34 |
return pytesseract.image_to_string(image)
|
35 |
|
36 |
+
def extract_text_from_pdf(pdf_path: str) -> str:
|
37 |
+
images = convert_from_path(pdf_path)
|
38 |
text = ""
|
39 |
+
for img in images:
|
40 |
+
text += extract_text_from_image(img)
|
|
|
41 |
return text
|
42 |
|
43 |
+
def generate_insights(text: str) -> List[Tuple[str, str]]:
|
44 |
+
"""Get interpretations and recommendations from the text."""
|
45 |
+
# Create a dummy input for the text model
|
46 |
+
inputs = vision_tokenizer.encode(text, return_tensors="pt", max_length=1000, truncation=True)
|
47 |
+
output_text = text_model(text, max_length=1000)[0]["generated_text"]
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
return [
|
50 |
+
("Report Interpretation", output_text),
|
51 |
+
("Actionable Recommendations", "Consult your physician for further tests if the values are abnormal."),
|
52 |
+
("Additional Insights", "Regular check-ups can help monitor and maintain healthy levels.")
|
53 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
# Process the uploaded file
|
56 |
if uploaded_file:
|
57 |
file_type = uploaded_file.type
|
58 |
+
file_name = uploaded_file.name
|
59 |
+
st.write(f"Uploaded File: {file_name}")
|
60 |
|
|
|
61 |
if file_type == "application/pdf":
|
62 |
+
with open("temp.pdf", "wb") as f:
|
63 |
+
f.write(uploaded_file.getvalue())
|
64 |
+
extracted_text = extract_text_from_pdf("temp.pdf")
|
65 |
+
os.remove("temp.pdf")
|
66 |
+
else: # For image files
|
67 |
+
image = Image.open(io.BytesIO(uploaded_file.getvalue()))
|
68 |
+
extracted_text = extract_text_from_image(image)
|
69 |
|
|
|
70 |
if extracted_text.strip():
|
71 |
+
st.subheader("Extracted Text from Report")
|
72 |
+
st.text_area("Lab Report Text", extracted_text, height=200)
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
# Get lab report interpretation and recommendations
|
75 |
+
st.subheader("Analysis & Insights")
|
76 |
+
insights = generate_insights(extracted_text)
|
77 |
|
78 |
+
for title, insight in insights:
|
79 |
+
st.markdown(f"### {title}")
|
80 |
+
st.write(insight)
|
81 |
else:
|
82 |
+
st.error("No text found in the uploaded file. Please try another file.")
|