bravewiki commited on
Commit
0fe3ed9
·
verified ·
1 Parent(s): 28cb500

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -21
app.py CHANGED
@@ -1,20 +1,25 @@
1
  import streamlit as st
2
- from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
 
3
  from PIL import Image
4
  import pytesseract
5
- import PyPDF2
6
  import pdfplumber
7
  import torch
8
 
9
- # Load ClinicalBERT model for medical text analysis
10
  @st.cache_resource
11
- def load_clinicalbert():
12
- tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
13
- model = AutoModelForSequenceClassification.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
14
- return pipeline("zero-shot-classification", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
 
15
 
16
- # Initialize ClinicalBERT classifier
17
- clinical_bert = load_clinicalbert()
 
 
 
 
18
 
19
  # OCR for Image using Tesseract
20
  def extract_text_from_image(image):
@@ -28,34 +33,33 @@ def extract_text_from_pdf(pdf_file):
28
  text += page.extract_text() or ""
29
  return text
30
 
31
- # Analyze and interpret the medical report using ClinicalBERT
32
  def analyze_medical_text(text):
33
- # Summarize the extracted text
34
- summary = clinical_bert(text, candidate_labels=["summary", "overview", "findings"], multi_label=False)['labels'][0]
35
 
36
- # Provide detailed interpretation
37
- interpretation = clinical_bert(
38
- text,
39
  candidate_labels=["normal", "abnormal", "urgent", "needs follow-up", "critical condition"],
40
  multi_label=True
41
  )
42
 
43
- # Provide actionable recommendations
44
- recommendations = clinical_bert(
45
- text,
46
  candidate_labels=["medication", "dietary change", "exercise", "follow-up with a doctor", "lifestyle change"],
47
  multi_label=True
48
  )
49
 
50
  return {
51
- "summary": summary,
52
  "interpretation": interpretation['labels'],
53
  "recommendations": recommendations['labels']
54
  }
55
 
56
  # Streamlit UI
57
- st.title("Medical Lab Report Analyzer with ClinicalBERT")
58
- st.write("Upload your medical lab report (PDF/Image) to get a summary and actionable insights using ClinicalBERT.")
59
 
60
  uploaded_file = st.file_uploader("Choose a PDF/Image file", type=["pdf", "png", "jpg", "jpeg"])
61
 
 
1
  import streamlit as st
2
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
3
+ from transformers import AutoModelForSequenceClassification
4
  from PIL import Image
5
  import pytesseract
 
6
  import pdfplumber
7
  import torch
8
 
9
+ # Load BART for zero-shot classification and Bio_ClinicalBERT for text summarization
10
  @st.cache_resource
11
+ def load_models():
12
+ # Bio_ClinicalBERT for text summarization
13
+ tokenizer_bert = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
14
+ model_bert = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn")
15
+ summarizer = pipeline("summarization", model=model_bert, tokenizer=tokenizer_bert, device=0 if torch.cuda.is_available() else -1)
16
 
17
+ # BART model for zero-shot classification
18
+ classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli", device=0 if torch.cuda.is_available() else -1)
19
+
20
+ return summarizer, classifier
21
+
22
+ summarizer, classifier = load_models()
23
 
24
  # OCR for Image using Tesseract
25
  def extract_text_from_image(image):
 
33
  text += page.extract_text() or ""
34
  return text
35
 
36
+ # Analyze and interpret the medical report
37
  def analyze_medical_text(text):
38
+ # Summarize the extracted text using ClinicalBERT
39
+ summarized_text = summarizer(text, max_length=100, min_length=30, do_sample=False)[0]['summary_text']
40
 
41
+ # Use BART for classification insights
42
+ interpretation = classifier(
43
+ summarized_text,
44
  candidate_labels=["normal", "abnormal", "urgent", "needs follow-up", "critical condition"],
45
  multi_label=True
46
  )
47
 
48
+ recommendations = classifier(
49
+ summarized_text,
 
50
  candidate_labels=["medication", "dietary change", "exercise", "follow-up with a doctor", "lifestyle change"],
51
  multi_label=True
52
  )
53
 
54
  return {
55
+ "summary": summarized_text,
56
  "interpretation": interpretation['labels'],
57
  "recommendations": recommendations['labels']
58
  }
59
 
60
  # Streamlit UI
61
+ st.title("Medical Lab Report Analyzer with ClinicalBERT and BART")
62
+ st.write("Upload your medical lab report (PDF/Image) to get a summary and actionable insights.")
63
 
64
  uploaded_file = st.file_uploader("Choose a PDF/Image file", type=["pdf", "png", "jpg", "jpeg"])
65