duck-duck-go / app.py
danielritchie's picture
Update app.py
3a603bd verified
raw
history blame
2.18 kB
import gradio as gr
import cv2
import numpy as np
from ultralytics import YOLO
# Initialize models
duck_model = YOLO('https://huggingface.co/brainwavecollective/yolo8n-rubber-duck-detector/resolve/main/yolov8n_rubberducks.pt')
standard_model = YOLO('yolov8n.pt')
def process_image(image, model):
results = model(image)
processed_image = image.copy()
for r in results:
boxes = r.boxes
for box in boxes:
# Get box coordinates and confidence
x1, y1, x2, y2 = map(int, box.xyxy[0].cpu().numpy())
conf = float(box.conf[0])
cls = int(box.cls[0])
class_name = model.names[cls]
# Draw box and label
cv2.rectangle(processed_image, (x1, y1), (x2, y2), (0, 255, 0), 2)
label = f"{class_name} ({conf:.2f})"
cv2.putText(processed_image, label, (x1, y1-10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
return processed_image
def compare_models(input_image):
# Convert from Gradio's PIL image to OpenCV format
image = np.array(input_image)
# Process with both models
duck_image = process_image(image, duck_model)
standard_image = process_image(image, standard_model)
# Create side-by-side comparison
height, width = image.shape[:2]
canvas = np.zeros((height, width * 2, 3), dtype=np.uint8)
# Place images side by side
canvas[:, :width] = duck_image
canvas[:, width:] = standard_image
# Add model labels
cv2.putText(canvas, "Duck Detector", (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.putText(canvas, "Standard YOLOv8", (width + 10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
return canvas
# Create Gradio interface
iface = gr.Interface(
fn=compare_models,
inputs=gr.Image(type="pil"),
outputs=gr.Image(type="numpy"),
title="YOLO Model Comparison",
description="Compare Duck Detector with standard YOLOv8 model",
examples=[["test_image.jpg"]],
cache_examples=True
)
# Launch the interface
if __name__ == "__main__":
iface.launch()