Update app.py
Browse files
app.py
CHANGED
@@ -2,69 +2,39 @@ import gradio as gr
|
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
from ultralytics import YOLO
|
5 |
-
import torch
|
6 |
|
7 |
# Initialize models
|
8 |
-
duck_model = YOLO('https://huggingface.co/brainwavecollective/yolo8n-rubber-duck-detector/resolve/main/
|
9 |
standard_model = YOLO('yolov8n.pt')
|
10 |
|
11 |
-
def
|
12 |
-
|
13 |
-
|
14 |
-
x2 = min(box1[2], box2[2])
|
15 |
-
y2 = min(box1[3], box2[3])
|
16 |
-
intersection = max(0, x2 - x1) * max(0, y2 - y1)
|
17 |
-
|
18 |
-
box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
|
19 |
-
box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1])
|
20 |
-
union = box1_area + box2_area - intersection
|
21 |
-
|
22 |
-
return intersection / union if union > 0 else 0
|
23 |
-
|
24 |
-
def process_image(image, model, is_duck_model=True):
|
25 |
-
results = model(image, conf=0.4)
|
26 |
|
27 |
-
valid_boxes = []
|
28 |
for r in results:
|
29 |
-
|
30 |
-
|
31 |
-
#
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
for existing_box in filtered_boxes:
|
43 |
-
if calculate_iou(box['coords'], existing_box['coords']) > 0.5:
|
44 |
-
if box['confidence'] <= existing_box['confidence']:
|
45 |
-
should_add = False
|
46 |
-
break
|
47 |
-
if should_add:
|
48 |
-
filtered_boxes.append(box)
|
49 |
|
50 |
-
|
51 |
-
processed_image = image.copy()
|
52 |
-
for box in filtered_boxes:
|
53 |
-
x1, y1, x2, y2 = map(int, box['coords'])
|
54 |
-
cv2.rectangle(processed_image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
55 |
-
label = f"{'Duck' if is_duck_model else 'Standard'} ({box['confidence']:.2f})"
|
56 |
-
cv2.putText(processed_image, label, (x1, y1-10),
|
57 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
58 |
-
|
59 |
-
return processed_image, len(filtered_boxes)
|
60 |
|
61 |
def compare_models(input_image):
|
62 |
# Convert from Gradio's PIL image to OpenCV format
|
63 |
image = np.array(input_image)
|
64 |
|
65 |
# Process with both models
|
66 |
-
duck_image
|
67 |
-
standard_image
|
68 |
|
69 |
# Create side-by-side comparison
|
70 |
height, width = image.shape[:2]
|
@@ -74,16 +44,11 @@ def compare_models(input_image):
|
|
74 |
canvas[:, :width] = duck_image
|
75 |
canvas[:, width:] = standard_image
|
76 |
|
77 |
-
# Add labels
|
78 |
-
cv2.putText(canvas, "
|
79 |
-
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
80 |
-
cv2.putText(canvas, f"Detections: {duck_detections}", (10, 60),
|
81 |
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
82 |
-
|
83 |
cv2.putText(canvas, "Standard YOLOv8", (width + 10, 30),
|
84 |
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
85 |
-
cv2.putText(canvas, f"Detections: {std_detections}", (width + 10, 60),
|
86 |
-
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
87 |
|
88 |
return canvas
|
89 |
|
@@ -93,11 +58,11 @@ iface = gr.Interface(
|
|
93 |
inputs=gr.Image(type="pil"),
|
94 |
outputs=gr.Image(type="numpy"),
|
95 |
title="YOLO Model Comparison",
|
96 |
-
description="Compare
|
97 |
-
examples=[["
|
98 |
cache_examples=True
|
99 |
)
|
100 |
|
101 |
# Launch the interface
|
102 |
if __name__ == "__main__":
|
103 |
-
iface.launch(
|
|
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
from ultralytics import YOLO
|
|
|
5 |
|
6 |
# Initialize models
|
7 |
+
duck_model = YOLO('https://huggingface.co/brainwavecollective/yolo8n-rubber-duck-detector/resolve/main/yolov8n_rubberducks.pt')
|
8 |
standard_model = YOLO('yolov8n.pt')
|
9 |
|
10 |
+
def process_image(image, model):
|
11 |
+
results = model(image)
|
12 |
+
processed_image = image.copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
|
|
14 |
for r in results:
|
15 |
+
boxes = r.boxes
|
16 |
+
for box in boxes:
|
17 |
+
# Get box coordinates and confidence
|
18 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0].cpu().numpy())
|
19 |
+
conf = float(box.conf[0])
|
20 |
+
cls = int(box.cls[0])
|
21 |
+
class_name = model.names[cls]
|
22 |
+
|
23 |
+
# Draw box and label
|
24 |
+
cv2.rectangle(processed_image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
25 |
+
label = f"{class_name} ({conf:.2f})"
|
26 |
+
cv2.putText(processed_image, label, (x1, y1-10),
|
27 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
return processed_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
def compare_models(input_image):
|
32 |
# Convert from Gradio's PIL image to OpenCV format
|
33 |
image = np.array(input_image)
|
34 |
|
35 |
# Process with both models
|
36 |
+
duck_image = process_image(image, duck_model)
|
37 |
+
standard_image = process_image(image, standard_model)
|
38 |
|
39 |
# Create side-by-side comparison
|
40 |
height, width = image.shape[:2]
|
|
|
44 |
canvas[:, :width] = duck_image
|
45 |
canvas[:, width:] = standard_image
|
46 |
|
47 |
+
# Add model labels
|
48 |
+
cv2.putText(canvas, "Duck Detector", (10, 30),
|
|
|
|
|
49 |
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
|
|
50 |
cv2.putText(canvas, "Standard YOLOv8", (width + 10, 30),
|
51 |
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
|
|
|
|
52 |
|
53 |
return canvas
|
54 |
|
|
|
58 |
inputs=gr.Image(type="pil"),
|
59 |
outputs=gr.Image(type="numpy"),
|
60 |
title="YOLO Model Comparison",
|
61 |
+
description="Compare Duck Detector with standard YOLOv8 model",
|
62 |
+
examples=[["test_image.jpg"]],
|
63 |
cache_examples=True
|
64 |
)
|
65 |
|
66 |
# Launch the interface
|
67 |
if __name__ == "__main__":
|
68 |
+
iface.launch()
|