Spaces:
Sleeping
Sleeping
Boris Shapkin
commited on
Commit
·
0d17078
1
Parent(s):
5018bdb
additional files
Browse files- huggingface_llm.py +51 -0
huggingface_llm.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.llms.base import LLM
|
2 |
+
from langchain.callbacks.manager import CallbackManagerForLLMRun
|
3 |
+
from typing import Any, List, Optional, Dict
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
+
import torch
|
6 |
+
from pydantic import Field
|
7 |
+
|
8 |
+
class HuggingFaceLLM(LLM):
|
9 |
+
model_id: str = Field(..., description="Hugging Face model ID")
|
10 |
+
model: Any = Field(default=None, exclude=True)
|
11 |
+
tokenizer: Any = Field(default=None, exclude=True)
|
12 |
+
device: str = Field(default="cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
temperature: float = Field(default=0.7, description="Sampling temperature")
|
14 |
+
max_tokens: int = Field(default=256, description="Maximum number of tokens to generate")
|
15 |
+
|
16 |
+
def __init__(self, **kwargs):
|
17 |
+
super().__init__(**kwargs)
|
18 |
+
self._load_model()
|
19 |
+
|
20 |
+
def _load_model(self):
|
21 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
|
22 |
+
self.model = AutoModelForCausalLM.from_pretrained(self.model_id).to(self.device)
|
23 |
+
|
24 |
+
@property
|
25 |
+
def _llm_type(self) -> str:
|
26 |
+
return "custom_huggingface"
|
27 |
+
|
28 |
+
def _call(
|
29 |
+
self,
|
30 |
+
prompt: str,
|
31 |
+
stop: Optional[List[str]] = None,
|
32 |
+
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
33 |
+
**kwargs: Any,
|
34 |
+
) -> str:
|
35 |
+
input_ids = self.tokenizer.encode(prompt, return_tensors="pt").to(self.device)
|
36 |
+
|
37 |
+
with torch.no_grad():
|
38 |
+
output = self.model.generate(
|
39 |
+
input_ids,
|
40 |
+
max_new_tokens=self.max_tokens,
|
41 |
+
temperature=self.temperature,
|
42 |
+
do_sample=True,
|
43 |
+
pad_token_id=self.tokenizer.eos_token_id
|
44 |
+
)
|
45 |
+
|
46 |
+
response = self.tokenizer.decode(output[0], skip_special_tokens=True)
|
47 |
+
return response[len(prompt):].strip()
|
48 |
+
|
49 |
+
@property
|
50 |
+
def _identifying_params(self) -> Dict[str, Any]:
|
51 |
+
return {"model_id": self.model_id, "temperature": self.temperature, "max_tokens": self.max_tokens}
|