Boris Shapkin commited on
Commit
5018bdb
·
1 Parent(s): 6225aed
Files changed (1) hide show
  1. app.py +182 -0
app.py ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ import pickle
4
+ from langchain.prompts import ChatPromptTemplate
5
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
6
+ from langchain_huggingface import HuggingFaceEmbeddings
7
+ from huggingface_llm import HuggingFaceLLM
8
+ from langchain.retrievers import ParentDocumentRetriever
9
+ from langchain.storage import InMemoryStore
10
+ from langchain_chroma import Chroma
11
+ from langchain_core.prompts import ChatPromptTemplate, FewShotChatMessagePromptTemplate
12
+ from langchain_core.output_parsers import StrOutputParser
13
+ from langchain_core.runnables import RunnableLambda
14
+ from datetime import date
15
+ from transformers import AutoModelForCausalLM, AutoTokenizer
16
+
17
+ # Environment variables
18
+ # os.environ['LANGCHAIN_TRACING_V2'] = 'true'
19
+ # os.environ['LANGCHAIN_ENDPOINT'] = 'https://api.smith.langchain.com'
20
+ # os.environ['LANGCHAIN_API_KEY'] = os.environ.get('LANGCHAIN_API_KEY')
21
+
22
+
23
+ # Load model and tokenizer
24
+ # @st.cache_resource
25
+ # def load_model():
26
+ # model_name = "allenai/OLMo-7B-Instruct"
27
+ # tokenizer = AutoTokenizer.from_pretrained(model_name)
28
+ # model = AutoModelForCausalLM.from_pretrained(model_name)
29
+ # return model, tokenizer
30
+
31
+ # model, tokenizer = load_model()
32
+ def load_from_pickle(filename):
33
+ with open(filename, "rb") as file:
34
+ return pickle.load(file)
35
+ def load_retriever(docstore_path,chroma_path,embeddings,child_splitter,parent_splitter):
36
+ """Loads the vector store and document store, initializing the retriever."""
37
+ db3 = Chroma(collection_name="full_documents", #collection_name shoud be the same as in the first time
38
+ embedding_function=embeddings,
39
+ persist_directory=chroma_path
40
+ )
41
+ store_dict = load_from_pickle(docstore_path)
42
+
43
+ store = InMemoryStore()
44
+ store.mset(list(store_dict.items()))
45
+
46
+ retriever = ParentDocumentRetriever(
47
+ vectorstore=db3,
48
+ docstore=store,
49
+ child_splitter=child_splitter,
50
+ parent_splitter=parent_splitter,
51
+ search_kwargs={"k": 5}
52
+ )
53
+ return retriever
54
+ def inspect(state):
55
+ if "context_sources" not in st.session_state:
56
+ st.session_state.context_sources = []
57
+ context = state['normal_context']
58
+ st.session_state.context_sources =[doc.metadata['source'] for doc in context]
59
+ st.session_state.context_content = [doc.page_content for doc in context]
60
+ return state
61
+ def retrieve_normal_context(retriever, question):
62
+ docs = retriever.invoke(question)
63
+ return docs
64
+
65
+ # Your OLMOLLM class implementation here (adapted for the Hugging Face model)
66
+
67
+ @st.cache_resource
68
+ def get_chain(temperature):
69
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L12-v2")
70
+
71
+ docstore_path = 'repos_github_opensmodel.pcl'
72
+ chroma_path = 'repos_github_opensmodel'
73
+ parent_splitter = RecursiveCharacterTextSplitter(chunk_size=2000,
74
+ chunk_overlap=500)
75
+
76
+ # create the child documents - The small chunks
77
+ child_splitter = RecursiveCharacterTextSplitter(chunk_size=300,
78
+ chunk_overlap=50)
79
+ retriever = load_retriever(docstore_path,chroma_path,embeddings,child_splitter,parent_splitter)
80
+
81
+ # Replace the local OLMOLLM with the Hugging Face model
82
+ llm = HuggingFaceLLM(
83
+ model_id="EleutherAI/gpt-neo-1.3B", # or another suitable model
84
+ temperature=temperature,
85
+ max_tokens=256
86
+ )
87
+
88
+ today = date.today()
89
+ # Response prompt
90
+ response_prompt_template = """You are an assistant who helps Ocean Hack Week community to answer their questions. I am going to ask you a question. Your response should be comprehensive and not contradicted with the following context if they are relevant. Otherwise, ignore them if they are not relevant.
91
+ Keep track of chat history: {chat_history}
92
+ Today's date: {date}
93
+ ## Normal Context:
94
+ {normal_context}
95
+
96
+ # Original Question: {question}
97
+
98
+ # Answer (embed links where relevant):
99
+
100
+ """
101
+ response_prompt = ChatPromptTemplate.from_template(response_prompt_template)
102
+ context_chain = RunnableLambda(lambda x: {
103
+ "question": x["question"],
104
+ "normal_context": retrieve_normal_context(retriever,x["question"]),
105
+ # "step_back_context": retrieve_step_back_context(retriever,generate_queries_step_back.invoke({"question": x["question"]})),
106
+ "chat_history": x["chat_history"],
107
+ "date": today})
108
+ chain = (
109
+ context_chain
110
+ | RunnableLambda(inspect)
111
+ | response_prompt
112
+ | llm
113
+ | StrOutputParser()
114
+ )
115
+ return chain
116
+
117
+ def clear_chat_history():
118
+ st.session_state.messages = []
119
+ st.session_state.context_sources = []
120
+ st.session_state.key = 0
121
+
122
+ st.set_page_config(page_title='OHW AI')
123
+
124
+ # Sidebar
125
+ with st.sidebar:
126
+ st.title("OHW Assistant")
127
+ temperature = st.slider("Temperature: ", 0.0, 1.0, 0.5, 0.1)
128
+ chain = get_chain(temperature)
129
+ st.button('Clear Chat History', on_click=clear_chat_history)
130
+
131
+ # Main app
132
+ if "messages" not in st.session_state:
133
+ st.session_state.messages = []
134
+
135
+
136
+ for q, message in enumerate(st.session_state.messages):
137
+ if (message["role"] == 'assistant'):
138
+ with st.chat_message(message["role"]):
139
+ tab1, tab2 = st.tabs(["Answer", "Sources"])
140
+ with tab1:
141
+ st.markdown(message["content"])
142
+
143
+ with tab2:
144
+ for i, source in enumerate(message["sources"]):
145
+ name = f'{source}'
146
+ with st.expander(name):
147
+ st.markdown(f'{message["context"][i]}')
148
+
149
+ else:
150
+ question = message["content"]
151
+ with st.chat_message(message["role"]):
152
+ st.markdown(message["content"])
153
+
154
+
155
+ if prompt := st.chat_input("How may I assist you today?"):
156
+ st.session_state.messages.append({"role": "user", "content": prompt})
157
+ with st.chat_message("user"):
158
+ st.markdown(prompt)
159
+
160
+ with st.chat_message("assistant"):
161
+ query=st.session_state.messages[-1]['content']
162
+ tab1, tab2 = st.tabs(["Answer", "Sources"])
163
+ with tab1:
164
+ placeholder = st.empty() # Create a placeholder in Streamlit
165
+ full_answer = ""
166
+ for chunk in chain.stream({"question": query, "chat_history":st.session_state.messages}):
167
+
168
+ full_answer += chunk
169
+ placeholder.markdown(full_answer,unsafe_allow_html=True)
170
+
171
+ with tab2:
172
+ for i, source in enumerate(st.session_state.context_sources):
173
+ name = f'{source}'
174
+ with st.expander(name):
175
+ st.markdown(f'{st.session_state.context_content[i]}')
176
+
177
+
178
+
179
+
180
+ st.session_state.messages.append({"role": "assistant", "content": full_answer})
181
+ st.session_state.messages[-1]['sources'] = st.session_state.context_sources
182
+ st.session_state.messages[-1]['context'] = st.session_state.context_content