File size: 9,361 Bytes
5018bdb
 
 
 
 
 
c0b7011
5018bdb
 
 
182f087
52cdceb
5018bdb
 
 
 
e094658
5bd5d90
79df212
ec75084
 
5018bdb
57ec3ad
 
 
5018bdb
 
e71849e
 
fbc7c52
e71849e
773a4a3
e71849e
5018bdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbc7c52
5018bdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec75084
5018bdb
 
2ec4111
 
5018bdb
 
 
 
 
 
 
ec75084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b0f9c9
1b3714a
5018bdb
 
 
 
 
 
 
 
 
 
8b01f29
5018bdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bd5d90
 
 
 
 
 
 
 
 
 
79df212
 
773a4a3
f4c52a4
5bd5d90
b37afff
 
5bd5d90
5018bdb
 
 
ec75084
 
 
 
 
5018bdb
ec75084
 
 
 
 
 
 
e757497
5018bdb
 
 
7593922
5018bdb
 
7593922
 
 
 
5018bdb
 
 
 
 
 
 
2a681e8
 
 
5018bdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7593922
5018bdb
 
2a681e8
79df212
 
74cf9e3
79df212
7593922
74cf9e3
79df212
5018bdb
7593922
 
 
 
 
 
 
 
5018bdb
 
 
 
7593922
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import streamlit as st
import os
import pickle
from langchain.prompts import ChatPromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFacePipeline
from langchain.retrievers import ParentDocumentRetriever
from langchain.storage import InMemoryStore
from langchain_chroma import Chroma
from langchain.llms import LlamaCpp
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate, FewShotChatMessagePromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnableLambda
from datetime import date
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import threading
import time
llm_list = ['Mistral-7B-Instruct-v0.2','Mixtral-8x7B-Instruct-v0.1','LLAMA3']
blablador_base = "https://helmholtz-blablador.fz-juelich.de:8000/v1"
# Environment variables
os.environ['LANGCHAIN_TRACING_V2'] = 'true'
os.environ['LANGCHAIN_ENDPOINT'] = 'https://api.smith.langchain.com'
os.environ['LANGCHAIN_API_KEY'] = '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'


@st.cache_resource
def load_model():
    model_name = "EleutherAI/gpt-neo-125M"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(model_name)
    return model, tokenizer
def load_from_pickle(filename):
    with open(filename, "rb") as file:
        return pickle.load(file)
def load_retriever(docstore_path,chroma_path,embeddings,child_splitter,parent_splitter):
    """Loads the vector store and document store, initializing the retriever."""
    db3 = Chroma(collection_name="full_documents", #collection_name shoud be the same as in the first time
                     embedding_function=embeddings,
                     persist_directory=chroma_path
    )
    store_dict = load_from_pickle(docstore_path)

    store = InMemoryStore()
    store.mset(list(store_dict.items()))

    retriever = ParentDocumentRetriever(
        vectorstore=db3,
        docstore=store,
        child_splitter=child_splitter,
        parent_splitter=parent_splitter,
        search_kwargs={"k": 2}
    )
    return retriever
def inspect(state):
    if "context_sources" not in st.session_state:
        st.session_state.context_sources = []
    context = state['normal_context']
    st.session_state.context_sources =[doc.metadata['source']  for doc in context]
    st.session_state.context_content = [doc.page_content for doc in context]
    return state
def retrieve_normal_context(retriever, question):
    docs = retriever.invoke(question)
    return docs

# Your OLMOLLM class implementation here (adapted for the Hugging Face model)

@st.cache_resource
def get_chain(temperature,selected_model):
    embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L12-v2")
    
    docstore_path = 'ohw_proj_chorma_db.pcl'
    chroma_path   = 'ohw_proj_chorma_db'
    parent_splitter = RecursiveCharacterTextSplitter(chunk_size=2000,
                                                    chunk_overlap=500)

    # create the child documents - The small chunks
    child_splitter = RecursiveCharacterTextSplitter(chunk_size=300,
                                                    chunk_overlap=50)
    retriever = load_retriever(docstore_path,chroma_path,embeddings,child_splitter,parent_splitter)
    llm_api = 'glpat-AMzMevbqaVjp4HbLcVum'
    llm = ChatOpenAI(model_name=selected_model,
                    temperature=temperature,
                    openai_api_key=llm_api,
                    openai_api_base=blablador_base,
                    streaming=True)
    # model, tokenizer = load_model()

    # pipe = pipeline(
    #     "text-generation",
    #     model=model, 
    #     tokenizer=tokenizer, 
    #     max_length=1800,
    #     max_new_tokens = 200,
    #     temperature=temperature,
    #     top_p=0.95,
    #     repetition_penalty=1.15
    # )

    # llm = HuggingFacePipeline(pipeline=pipe)

    
    today = date.today()
    # Response prompt 
    response_prompt_template = """You are an assistant who helps Ocean Hack Week community to answer their questions. I am going to ask you a question. Your response should be comprehensive and not contradicted with the following context if they are relevant. Otherwise, ignore them if they are not relevant.
    Keep track of chat history: {chat_history}
    Today's date: {date}
    ## Normal Context:
    {normal_context}
 
    # Original Question: {question}

    # Answer (Please provide a comprehensive answer.):
    
    """
    response_prompt = ChatPromptTemplate.from_template(response_prompt_template)
    context_chain = RunnableLambda(lambda x: {
    "question": x["question"],
    "normal_context": retrieve_normal_context(retriever,x["question"]),
    # "step_back_context": retrieve_step_back_context(retriever,generate_queries_step_back.invoke({"question": x["question"]})),
    "chat_history": x["chat_history"],
    "date": today})
    chain = (
        context_chain
        | RunnableLambda(inspect)
        | response_prompt
        | llm
        | StrOutputParser()
    )
    return chain

def clear_chat_history():
    st.session_state.messages = []
    st.session_state.context_sources = []
    st.session_state.key = 0
def run_with_timeout(func, args, timeout):
    result = [None]
    def worker():
        result[0] = func(*args)
    thread = threading.Thread(target=worker)
    thread.start()
    thread.join(timeout)
    if thread.is_alive():
        return None
    return result[0]
# In your Streamlit app
def generate_response(chain, query, context):
    timeout_seconds = 180
    result = chain.invoke, ({"question": query, "chat_history": st.session_state.messages},)
    if result is None:
        return result
        # return "I apologize, but I couldn't generate a response in time. The query might be too complex for me to process quickly. Could you try simplifying your question?"
    return result
# Sidebar
with st.sidebar:
    st.title("OHW Assistant")
    selected_model = st.sidebar.selectbox('Choose a LLM model',
                                           llm_list,
                                             key='selected_model',
                                             index = None)

    temperature = st.slider("Temperature: ", 0.0, 1.0, 0.5, 0.1)
    if selected_model in ['Mistral-7B-Instruct-v0.2', 'Mixtral-8x7B-Instruct-v0.1','LLAMA3']:
        if selected_model == 'Mistral-7B-Instruct-v0.2':
            selected_model = 'alias-fast'
        elif selected_model == 'Mixtral-8x7B-Instruct-v0.1':
            selected_model = 'alias-large'
        elif selected_model == 'LLAMA3':
            selected_model = 'alias-experimental'
        chain = get_chain(temperature,selected_model)
    st.button('Clear Chat History', on_click=clear_chat_history)

# Main app
# Initialize session state variables
if "messages" not in st.session_state:
    st.session_state.messages = []
if "context_sources" not in st.session_state:
    st.session_state.context_sources = []
if "context_content" not in st.session_state:
    st.session_state.context_content = []


for q, message in enumerate(st.session_state.messages):
    if (message["role"] == 'assistant'):
        with st.chat_message(message["role"]):
            tab1, tab2 = st.tabs(["Answer", "Sources"])
            with tab1:
                st.markdown(message["content"])
    
            with tab2:
                for i, source in enumerate(message["sources"]):
                    name = f'{source}'
                    with st.expander(name):
                        st.markdown(f'{message["context"][i]}')
            
    else:
        question = message["content"]
        with st.chat_message(message["role"]):
            st.markdown(message["content"])


if prompt := st.chat_input("How may I assist you today?"):
    st.session_state.messages.append({"role": "user", "content": prompt})
    with st.chat_message("user"):
        st.markdown(prompt)

    with st.chat_message("assistant"):
        query = st.session_state.messages[-1]['content']
        tab1, tab2 = st.tabs(["Answer", "Sources"])
        with tab1:
            with st.spinner("Generating answer..."):
                chain = get_chain(temperature)
                start_time = time.time()
                full_answer = chain.invoke({"question": query, "chat_history":st.session_state.messages})# Context is handled within the chain
                end_time = time.time()

            st.markdown(full_answer,unsafe_allow_html=True)
            st.caption(f"Response time: {end_time - start_time:.2f} seconds")

        with tab2:
            if st.session_state.context_sources:
                for i, source in enumerate(st.session_state.context_sources):
                    name = f'{source}'
                    with st.expander(name):
                        st.markdown(f'{st.session_state.context_content[i]}')
            else:
                st.write("No sources available for this query.")

    st.session_state.messages.append({"role": "assistant", "content": full_answer})
    st.session_state.messages[-1]['sources'] = st.session_state.context_sources
    st.session_state.messages[-1]['context'] = st.session_state.context_content