Spaces:
Sleeping
Sleeping
File size: 9,361 Bytes
5018bdb c0b7011 5018bdb 182f087 52cdceb 5018bdb e094658 5bd5d90 79df212 ec75084 5018bdb 57ec3ad 5018bdb e71849e fbc7c52 e71849e 773a4a3 e71849e 5018bdb fbc7c52 5018bdb ec75084 5018bdb 2ec4111 5018bdb ec75084 2b0f9c9 1b3714a 5018bdb 8b01f29 5018bdb 5bd5d90 79df212 773a4a3 f4c52a4 5bd5d90 b37afff 5bd5d90 5018bdb ec75084 5018bdb ec75084 e757497 5018bdb 7593922 5018bdb 7593922 5018bdb 2a681e8 5018bdb 7593922 5018bdb 2a681e8 79df212 74cf9e3 79df212 7593922 74cf9e3 79df212 5018bdb 7593922 5018bdb 7593922 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import streamlit as st
import os
import pickle
from langchain.prompts import ChatPromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFacePipeline
from langchain.retrievers import ParentDocumentRetriever
from langchain.storage import InMemoryStore
from langchain_chroma import Chroma
from langchain.llms import LlamaCpp
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate, FewShotChatMessagePromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnableLambda
from datetime import date
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import threading
import time
llm_list = ['Mistral-7B-Instruct-v0.2','Mixtral-8x7B-Instruct-v0.1','LLAMA3']
blablador_base = "https://helmholtz-blablador.fz-juelich.de:8000/v1"
# Environment variables
os.environ['LANGCHAIN_TRACING_V2'] = 'true'
os.environ['LANGCHAIN_ENDPOINT'] = 'https://api.smith.langchain.com'
os.environ['LANGCHAIN_API_KEY'] = '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'
@st.cache_resource
def load_model():
model_name = "EleutherAI/gpt-neo-125M"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
return model, tokenizer
def load_from_pickle(filename):
with open(filename, "rb") as file:
return pickle.load(file)
def load_retriever(docstore_path,chroma_path,embeddings,child_splitter,parent_splitter):
"""Loads the vector store and document store, initializing the retriever."""
db3 = Chroma(collection_name="full_documents", #collection_name shoud be the same as in the first time
embedding_function=embeddings,
persist_directory=chroma_path
)
store_dict = load_from_pickle(docstore_path)
store = InMemoryStore()
store.mset(list(store_dict.items()))
retriever = ParentDocumentRetriever(
vectorstore=db3,
docstore=store,
child_splitter=child_splitter,
parent_splitter=parent_splitter,
search_kwargs={"k": 2}
)
return retriever
def inspect(state):
if "context_sources" not in st.session_state:
st.session_state.context_sources = []
context = state['normal_context']
st.session_state.context_sources =[doc.metadata['source'] for doc in context]
st.session_state.context_content = [doc.page_content for doc in context]
return state
def retrieve_normal_context(retriever, question):
docs = retriever.invoke(question)
return docs
# Your OLMOLLM class implementation here (adapted for the Hugging Face model)
@st.cache_resource
def get_chain(temperature,selected_model):
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L12-v2")
docstore_path = 'ohw_proj_chorma_db.pcl'
chroma_path = 'ohw_proj_chorma_db'
parent_splitter = RecursiveCharacterTextSplitter(chunk_size=2000,
chunk_overlap=500)
# create the child documents - The small chunks
child_splitter = RecursiveCharacterTextSplitter(chunk_size=300,
chunk_overlap=50)
retriever = load_retriever(docstore_path,chroma_path,embeddings,child_splitter,parent_splitter)
llm_api = 'glpat-AMzMevbqaVjp4HbLcVum'
llm = ChatOpenAI(model_name=selected_model,
temperature=temperature,
openai_api_key=llm_api,
openai_api_base=blablador_base,
streaming=True)
# model, tokenizer = load_model()
# pipe = pipeline(
# "text-generation",
# model=model,
# tokenizer=tokenizer,
# max_length=1800,
# max_new_tokens = 200,
# temperature=temperature,
# top_p=0.95,
# repetition_penalty=1.15
# )
# llm = HuggingFacePipeline(pipeline=pipe)
today = date.today()
# Response prompt
response_prompt_template = """You are an assistant who helps Ocean Hack Week community to answer their questions. I am going to ask you a question. Your response should be comprehensive and not contradicted with the following context if they are relevant. Otherwise, ignore them if they are not relevant.
Keep track of chat history: {chat_history}
Today's date: {date}
## Normal Context:
{normal_context}
# Original Question: {question}
# Answer (Please provide a comprehensive answer.):
"""
response_prompt = ChatPromptTemplate.from_template(response_prompt_template)
context_chain = RunnableLambda(lambda x: {
"question": x["question"],
"normal_context": retrieve_normal_context(retriever,x["question"]),
# "step_back_context": retrieve_step_back_context(retriever,generate_queries_step_back.invoke({"question": x["question"]})),
"chat_history": x["chat_history"],
"date": today})
chain = (
context_chain
| RunnableLambda(inspect)
| response_prompt
| llm
| StrOutputParser()
)
return chain
def clear_chat_history():
st.session_state.messages = []
st.session_state.context_sources = []
st.session_state.key = 0
def run_with_timeout(func, args, timeout):
result = [None]
def worker():
result[0] = func(*args)
thread = threading.Thread(target=worker)
thread.start()
thread.join(timeout)
if thread.is_alive():
return None
return result[0]
# In your Streamlit app
def generate_response(chain, query, context):
timeout_seconds = 180
result = chain.invoke, ({"question": query, "chat_history": st.session_state.messages},)
if result is None:
return result
# return "I apologize, but I couldn't generate a response in time. The query might be too complex for me to process quickly. Could you try simplifying your question?"
return result
# Sidebar
with st.sidebar:
st.title("OHW Assistant")
selected_model = st.sidebar.selectbox('Choose a LLM model',
llm_list,
key='selected_model',
index = None)
temperature = st.slider("Temperature: ", 0.0, 1.0, 0.5, 0.1)
if selected_model in ['Mistral-7B-Instruct-v0.2', 'Mixtral-8x7B-Instruct-v0.1','LLAMA3']:
if selected_model == 'Mistral-7B-Instruct-v0.2':
selected_model = 'alias-fast'
elif selected_model == 'Mixtral-8x7B-Instruct-v0.1':
selected_model = 'alias-large'
elif selected_model == 'LLAMA3':
selected_model = 'alias-experimental'
chain = get_chain(temperature,selected_model)
st.button('Clear Chat History', on_click=clear_chat_history)
# Main app
# Initialize session state variables
if "messages" not in st.session_state:
st.session_state.messages = []
if "context_sources" not in st.session_state:
st.session_state.context_sources = []
if "context_content" not in st.session_state:
st.session_state.context_content = []
for q, message in enumerate(st.session_state.messages):
if (message["role"] == 'assistant'):
with st.chat_message(message["role"]):
tab1, tab2 = st.tabs(["Answer", "Sources"])
with tab1:
st.markdown(message["content"])
with tab2:
for i, source in enumerate(message["sources"]):
name = f'{source}'
with st.expander(name):
st.markdown(f'{message["context"][i]}')
else:
question = message["content"]
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input("How may I assist you today?"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
query = st.session_state.messages[-1]['content']
tab1, tab2 = st.tabs(["Answer", "Sources"])
with tab1:
with st.spinner("Generating answer..."):
chain = get_chain(temperature)
start_time = time.time()
full_answer = chain.invoke({"question": query, "chat_history":st.session_state.messages})# Context is handled within the chain
end_time = time.time()
st.markdown(full_answer,unsafe_allow_html=True)
st.caption(f"Response time: {end_time - start_time:.2f} seconds")
with tab2:
if st.session_state.context_sources:
for i, source in enumerate(st.session_state.context_sources):
name = f'{source}'
with st.expander(name):
st.markdown(f'{st.session_state.context_content[i]}')
else:
st.write("No sources available for this query.")
st.session_state.messages.append({"role": "assistant", "content": full_answer})
st.session_state.messages[-1]['sources'] = st.session_state.context_sources
st.session_state.messages[-1]['context'] = st.session_state.context_content
|