Spaces:
Sleeping
Sleeping
import spaces | |
from snac import SNAC | |
import torch | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from huggingface_hub import snapshot_download | |
import google.generativeai as genai | |
import re | |
import logging | |
import numpy as np | |
from pydub import AudioSegment | |
import io | |
from docx import Document | |
import PyPDF2 | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print("Loading SNAC model...") | |
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz") | |
snac_model = snac_model.to(device) | |
model_name = "canopylabs/orpheus-3b-0.1-ft" | |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16) | |
model.to(device) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
print(f"Orpheus model loaded to {device}") | |
# Available voices | |
VOICES = ["tara", "leah", "jess", "leo", "dan", "mia", "zac", "zoe"] | |
# Available Emotive Tags | |
EMOTIVE_TAGS = ["`<laugh>`", "`<chuckle>`", "`<sigh>`", "`<cough>`", "`<sniffle>`", "`<groan>`", "`<yawn>`", "`<gasp>`"] | |
def generate_podcast_script(api_key, prompt, uploaded_file, duration, num_hosts): | |
try: | |
genai.configure(api_key=api_key) | |
model = genai.GenerativeModel('gemini-2.5-pro-preview-03-25') | |
combined_content = prompt or "" | |
if uploaded_file is not None: | |
file_bytes = io.BytesIO(uploaded_file) | |
# Try to detect the file type based on content | |
file_bytes.seek(0) | |
if file_bytes.read(4) == b'%PDF': | |
# It's a PDF file | |
file_bytes.seek(0) | |
pdf_reader = PyPDF2.PdfReader(file_bytes) | |
file_content = "\n".join([page.extract_text() for page in pdf_reader.pages]) | |
else: | |
# Try as text file first | |
file_bytes.seek(0) | |
try: | |
file_content = file_bytes.read().decode('utf-8') | |
except UnicodeDecodeError: | |
# If it's not a text file, try as a docx | |
file_bytes.seek(0) | |
try: | |
doc = Document(file_bytes) | |
file_content = "\n".join([para.text for para in doc.paragraphs]) | |
except: | |
raise ValueError("Unsupported file type or corrupted file") | |
combined_content += "\n" + file_content if combined_content else file_content | |
num_hosts = int(num_hosts) # Convert to integer | |
prompt_template = f""" | |
Create a podcast script for {num_hosts} {'person' if num_hosts == 1 else 'people'} discussing: | |
{combined_content} | |
Duration: {duration} minutes. Include natural speech, humor, and occasional off-topic thoughts. | |
Use speech fillers like um, ah. Vary emotional tone. | |
Format: {'Monologue' if num_hosts == 1 else 'Alternating dialogue'} without speaker labels. | |
Separate {'paragraphs' if num_hosts == 1 else 'lines'} with blank lines. | |
only provide the dialog for text to speech | |
Only use these emotion tags in angle brackets: <laugh>, <sigh>, <chuckle>, <cough>, <sniffle>, <groan>, <yawn>, <gasp>. | |
-Example: "I can't believe I stayed up all night <yawn> only to find out the meeting was canceled <groan>." | |
Ensure content flows naturally and stays on topic. Match the script length to {duration} minutes. | |
Do not include speaker labels like "John:" or "Sara:" before dialogue. | |
The intro always includes the first speaker and should be in the same paragraph. | |
The outro always includes the first speaker and should be in the same paragraph | |
Do not include these types of transition "Intro Music fades in and then fades slightly to background" | |
Keep each speaker's entire monologue in a single paragraph, regardless of length if the number of hosts is not 1. | |
Start a new paragraph only when switching to a different speaker if the number of hosts is not 1. | |
Maintain natural conversation flow and speech patterns within each monologue. | |
Use context clues or subtle references to indicate who is speaking without explicit labels if the number of hosts is not 1 | |
Use speaker names sparingly, only when necessary for clarity or emphasis. Avoid starting every line with the other person's name. | |
Rely more on context and speech patterns to indicate who is speaking, rather than always stating names. | |
Use names primarily for transitions sparingly, definitely with agreements, or to draw attention to a specific point, not as a constant form of address. | |
{'Make sure the script is a monologue for one person.' if num_hosts == 1 else 'Ensure the dialogue alternates between two distinct voices, with one speaking on odd-numbered lines and the other on even-numbered lines.'} | |
""" | |
response = model.generate_content(prompt_template) | |
return re.sub(r'[^a-zA-Z0-9\s.,?!<>]', '', response.text) | |
except Exception as e: | |
logger.error(f"Error generating podcast script: {str(e)}") | |
raise | |
def process_prompt(prompt, voice, tokenizer, device): | |
prompt = f"{voice}: {prompt}" | |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids | |
start_token = torch.tensor([[128259]], dtype=torch.int64) | |
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64) | |
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1) | |
attention_mask = torch.ones_like(modified_input_ids) | |
return modified_input_ids.to(device), attention_mask.to(device) | |
def parse_output(generated_ids): | |
token_to_find = 128257 | |
token_to_remove = 128258 | |
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True) | |
if len(token_indices[1]) > 0: | |
last_occurrence_idx = token_indices[1][-1].item() | |
cropped_tensor = generated_ids[:, last_occurrence_idx+1:] | |
else: | |
cropped_tensor = generated_ids | |
processed_rows = [] | |
for row in cropped_tensor: | |
masked_row = row[row != token_to_remove] | |
processed_rows.append(masked_row) | |
code_lists = [] | |
for row in processed_rows: | |
row_length = row.size(0) | |
new_length = (row_length // 7) * 7 | |
trimmed_row = row[:new_length] | |
trimmed_row = [t - 128266 for t in trimmed_row] | |
code_lists.append(trimmed_row) | |
return code_lists[0] | |
def redistribute_codes(code_list, snac_model): | |
device = next(snac_model.parameters()).device # Get the device of SNAC model | |
layer_1 = [] | |
layer_2 = [] | |
layer_3 = [] | |
for i in range((len(code_list)+1)//7): | |
layer_1.append(code_list[7*i]) | |
layer_2.append(code_list[7*i+1]-4096) | |
layer_3.append(code_list[7*i+2]-(2*4096)) | |
layer_3.append(code_list[7*i+3]-(3*4096)) | |
layer_2.append(code_list[7*i+4]-(4*4096)) | |
layer_3.append(code_list[7*i+5]-(5*4096)) | |
layer_3.append(code_list[7*i+6]-(6*4096)) | |
codes = [ | |
torch.tensor(layer_1, device=device).unsqueeze(0), | |
torch.tensor(layer_2, device=device).unsqueeze(0), | |
torch.tensor(layer_3, device=device).unsqueeze(0) | |
] | |
audio_hat = snac_model.decode(codes) | |
return audio_hat.detach().squeeze().cpu().numpy() # Always return CPU numpy array | |
def detect_silence(audio, threshold=0.01, min_silence_duration=1.2): | |
sample_rate = 24000 # Adjust if your sample rate is different | |
is_silent = np.abs(audio) < threshold | |
silent_regions = np.where(is_silent)[0] | |
silence_starts = [] | |
silence_ends = [] | |
if len(silent_regions) > 0: | |
silence_starts.append(silent_regions[0]) | |
for i in range(1, len(silent_regions)): | |
if silent_regions[i] - silent_regions[i-1] > 1: | |
silence_ends.append(silent_regions[i-1]) | |
silence_starts.append(silent_regions[i]) | |
silence_ends.append(silent_regions[-1]) | |
long_silences = [(start, end) for start, end in zip(silence_starts, silence_ends) | |
if (end - start) / sample_rate >= min_silence_duration] | |
return long_silences | |
def generate_speech(text, voice1, voice2, temperature, top_p, repetition_penalty, max_new_tokens, num_hosts, progress=gr.Progress()): | |
if not text.strip(): | |
return None | |
try: | |
progress(0.1, "Processing text...") | |
paragraphs = text.split('\n\n') # Split by double newline | |
audio_samples = [] | |
for i, paragraph in enumerate(paragraphs): | |
if not paragraph.strip(): | |
continue | |
voice = voice1 if num_hosts == "1" or i % 2 == 0 else voice2 | |
input_ids, attention_mask = process_prompt(paragraph, voice, tokenizer, device) | |
progress(0.3, f"Generating speech tokens for paragraph {i+1}...") | |
with torch.no_grad(): | |
generated_ids = model.generate( | |
input_ids, | |
attention_mask=attention_mask, | |
do_sample=True, | |
temperature=temperature, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
max_new_tokens=max_new_tokens, | |
num_return_sequences=1, | |
eos_token_id=128258, | |
) | |
progress(0.6, f"Processing speech tokens for paragraph {i+1}...") | |
code_list = parse_output(generated_ids) | |
progress(0.8, f"Converting paragraph {i+1} to audio...") | |
paragraph_audio = redistribute_codes(code_list, snac_model) | |
# Add silence detection here | |
silences = detect_silence(paragraph_audio) | |
if silences: | |
# Trim the audio at the last detected silence | |
paragraph_audio = paragraph_audio[:silences[-1][1]] | |
audio_samples.append(paragraph_audio) | |
final_audio = np.concatenate(audio_samples) | |
# Normalize the audio | |
final_audio = np.int16(final_audio / np.max(np.abs(final_audio)) * 32767) | |
return (24000, final_audio) | |
except Exception as e: | |
print(f"Error generating speech: {e}") | |
return None | |
with gr.Blocks(title="Orpheus Text-to-Speech") as demo: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gemini_api_key = gr.Textbox(label="Gemini API Key", type="password") | |
prompt = gr.Textbox( | |
label="Prompt", | |
placeholder="Enter your text here...", | |
lines=5, | |
max_lines=30, | |
show_label=True, | |
interactive=True, | |
container=True | |
) | |
uploaded_file = gr.File(label="Upload File", type="binary") | |
with gr.Column(scale=2): | |
duration = gr.Slider(minimum=1, maximum=60, value=5, step=1, label="Duration (minutes)") | |
num_hosts = gr.Radio(["1", "2"], label="Number of Hosts", value="1") | |
script_output = gr.Textbox(label="Generated Script", lines=10) | |
generate_script_btn = gr.Button("Generate Podcast Script") | |
with gr.Column(scale=2): | |
voice1 = gr.Dropdown( | |
choices=VOICES, | |
value="tara", | |
label="Voice 1", | |
info="Select the first voice for speech generation" | |
) | |
voice2 = gr.Dropdown( | |
choices=VOICES, | |
value="zac", | |
label="Voice 2", | |
info="Select the second voice for speech generation" | |
) | |
with gr.Accordion("Advanced Settings", open=False): | |
temperature = gr.Slider( | |
minimum=0.1, maximum=1.5, value=0.6, step=0.05, | |
label="Temperature", | |
info="Higher values (0.7-1.0) create more expressive but less stable speech" | |
) | |
top_p = gr.Slider( | |
minimum=0.1, maximum=1.0, value=0.9, step=0.05, | |
label="Top P", | |
info="Higher values produce more diverse outputs" | |
) | |
repetition_penalty = gr.Slider( | |
minimum=1.0, maximum=2.0, value=1.2, step=0.1, | |
label="Repetition Penalty", | |
info="Higher values discourage repetitive patterns" | |
) | |
max_new_tokens = gr.Slider( | |
minimum=100, maximum=4096, value=2048, step=100, | |
label="Max Length", | |
info="Maximum length of generated audio (in tokens)" | |
) | |
audio_output = gr.Audio(label="Generated Audio", type="numpy") | |
with gr.Row(): | |
submit_btn = gr.Button("Generate Audio", variant="primary") | |
clear_btn = gr.Button("Clear") | |
generate_script_btn.click( | |
fn=generate_podcast_script, | |
inputs=[gemini_api_key, prompt, uploaded_file, duration, num_hosts], | |
outputs=script_output | |
) | |
submit_btn.click( | |
fn=generate_speech, | |
inputs=[script_output, voice1, voice2, temperature, top_p, repetition_penalty, max_new_tokens, num_hosts], | |
outputs=audio_output | |
) | |
clear_btn.click( | |
fn=lambda: (None, None, None), | |
inputs=[], | |
outputs=[prompt, script_output, audio_output] | |
) | |
if __name__ == "__main__": | |
demo.queue().launch(share=False, ssr_mode=False) |