Spaces:
Sleeping
Sleeping
File size: 13,761 Bytes
a26f93a b35040f 1b14f4f 4f4519e 3450cf6 841bbb9 ac511b5 4f4519e b35040f 9d5df43 c3ffb57 b35040f 2cf25ca 4f4519e 1b14f4f 43f2e7f 1b14f4f cdbb971 43f2e7f cdbb971 43f2e7f cdbb971 43f2e7f 1b14f4f 88fa21c 43f2e7f 88fa21c 1b14f4f d9cc1e0 4f90edf 1b14f4f 4f90edf 7425d7f 43f2e7f 4f90edf 43f2e7f 4f90edf 83886ae 1b14f4f 43f2e7f 1b14f4f b35040f 4f4519e b35040f 4f4519e b35040f 4f4519e b35040f 2cf25ca bf4cb6c 2cf25ca bf4cb6c 2cf25ca bf4cb6c 2cf25ca b75b2e9 278090b 83886ae b35040f 38b40d2 83886ae b35040f 38b40d2 83886ae 180ce7d d9cc1e0 97d8674 83886ae 97d8674 b75b2e9 97d8674 b35040f 83886ae b35040f 29aab57 bc82d72 29aab57 b35040f 624da7b b35040f 1b14f4f 35d26f3 f44a6e6 7f6e657 b7f405c 13cd58d b7f405c 4f4519e 83886ae 2cf25ca 2ac64ec 83886ae ee040f7 83886ae 2cf25ca 354fe1f 2cf25ca 4d20022 2cf25ca 354fe1f b35040f 483671e 2cf25ca b35040f 1b14f4f b35040f 83886ae b35040f 1b14f4f b35040f 1b14f4f b35040f 4f4519e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import spaces
from snac import SNAC
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import snapshot_download
import google.generativeai as genai
import re
import logging
import numpy as np
from pydub import AudioSegment
import io
from docx import Document
import PyPDF2
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Loading SNAC model...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model = snac_model.to(device)
model_name = "canopylabs/orpheus-3b-0.1-ft"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
print(f"Orpheus model loaded to {device}")
# Available voices
VOICES = ["tara", "leah", "jess", "leo", "dan", "mia", "zac", "zoe"]
# Available Emotive Tags
EMOTIVE_TAGS = ["`<laugh>`", "`<chuckle>`", "`<sigh>`", "`<cough>`", "`<sniffle>`", "`<groan>`", "`<yawn>`", "`<gasp>`"]
@spaces.GPU()
def generate_podcast_script(api_key, prompt, uploaded_file, duration, num_hosts):
try:
genai.configure(api_key=api_key)
model = genai.GenerativeModel('gemini-2.5-pro-preview-03-25')
combined_content = prompt or ""
if uploaded_file is not None:
file_bytes = io.BytesIO(uploaded_file)
# Try to detect the file type based on content
file_bytes.seek(0)
if file_bytes.read(4) == b'%PDF':
# It's a PDF file
file_bytes.seek(0)
pdf_reader = PyPDF2.PdfReader(file_bytes)
file_content = "\n".join([page.extract_text() for page in pdf_reader.pages])
else:
# Try as text file first
file_bytes.seek(0)
try:
file_content = file_bytes.read().decode('utf-8')
except UnicodeDecodeError:
# If it's not a text file, try as a docx
file_bytes.seek(0)
try:
doc = Document(file_bytes)
file_content = "\n".join([para.text for para in doc.paragraphs])
except:
raise ValueError("Unsupported file type or corrupted file")
combined_content += "\n" + file_content if combined_content else file_content
num_hosts = int(num_hosts) # Convert to integer
prompt_template = f"""
Create a podcast script for {num_hosts} {'person' if num_hosts == 1 else 'people'} discussing:
{combined_content}
Duration: {duration} minutes. Include natural speech, humor, and occasional off-topic thoughts.
Use speech fillers like um, ah. Vary emotional tone.
Format: {'Monologue' if num_hosts == 1 else 'Alternating dialogue'} without speaker labels.
Separate {'paragraphs' if num_hosts == 1 else 'lines'} with blank lines.
only provide the dialog for text to speech
Only use these emotion tags in angle brackets: <laugh>, <sigh>, <chuckle>, <cough>, <sniffle>, <groan>, <yawn>, <gasp>.
-Example: "I can't believe I stayed up all night <yawn> only to find out the meeting was canceled <groan>."
Ensure content flows naturally and stays on topic. Match the script length to {duration} minutes.
Do not include speaker labels like "John:" or "Sara:" before dialogue.
The intro always includes the first speaker and should be in the same paragraph.
The outro always includes the first speaker and should be in the same paragraph
Do not include these types of transition "Intro Music fades in and then fades slightly to background"
Keep each speaker's entire monologue in a single paragraph, regardless of length if the number of hosts is not 1.
Start a new paragraph only when switching to a different speaker if the number of hosts is not 1.
Maintain natural conversation flow and speech patterns within each monologue.
Use context clues or subtle references to indicate who is speaking without explicit labels if the number of hosts is not 1
Use speaker names sparingly, only when necessary for clarity or emphasis. Avoid starting every line with the other person's name.
Rely more on context and speech patterns to indicate who is speaking, rather than always stating names.
Use names primarily for transitions sparingly, definitely with agreements, or to draw attention to a specific point, not as a constant form of address.
{'Make sure the script is a monologue for one person.' if num_hosts == 1 else 'Ensure the dialogue alternates between two distinct voices, with one speaking on odd-numbered lines and the other on even-numbered lines.'}
"""
response = model.generate_content(prompt_template)
return re.sub(r'[^a-zA-Z0-9\s.,?!<>]', '', response.text)
except Exception as e:
logger.error(f"Error generating podcast script: {str(e)}")
raise
def process_prompt(prompt, voice, tokenizer, device):
prompt = f"{voice}: {prompt}"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
start_token = torch.tensor([[128259]], dtype=torch.int64)
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64)
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
attention_mask = torch.ones_like(modified_input_ids)
return modified_input_ids.to(device), attention_mask.to(device)
def parse_output(generated_ids):
token_to_find = 128257
token_to_remove = 128258
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
if len(token_indices[1]) > 0:
last_occurrence_idx = token_indices[1][-1].item()
cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
else:
cropped_tensor = generated_ids
processed_rows = []
for row in cropped_tensor:
masked_row = row[row != token_to_remove]
processed_rows.append(masked_row)
code_lists = []
for row in processed_rows:
row_length = row.size(0)
new_length = (row_length // 7) * 7
trimmed_row = row[:new_length]
trimmed_row = [t - 128266 for t in trimmed_row]
code_lists.append(trimmed_row)
return code_lists[0]
def redistribute_codes(code_list, snac_model):
device = next(snac_model.parameters()).device # Get the device of SNAC model
layer_1 = []
layer_2 = []
layer_3 = []
for i in range((len(code_list)+1)//7):
layer_1.append(code_list[7*i])
layer_2.append(code_list[7*i+1]-4096)
layer_3.append(code_list[7*i+2]-(2*4096))
layer_3.append(code_list[7*i+3]-(3*4096))
layer_2.append(code_list[7*i+4]-(4*4096))
layer_3.append(code_list[7*i+5]-(5*4096))
layer_3.append(code_list[7*i+6]-(6*4096))
codes = [
torch.tensor(layer_1, device=device).unsqueeze(0),
torch.tensor(layer_2, device=device).unsqueeze(0),
torch.tensor(layer_3, device=device).unsqueeze(0)
]
audio_hat = snac_model.decode(codes)
return audio_hat.detach().squeeze().cpu().numpy() # Always return CPU numpy array
def detect_silence(audio, threshold=0.01, min_silence_duration=1.2):
sample_rate = 24000 # Adjust if your sample rate is different
is_silent = np.abs(audio) < threshold
silent_regions = np.where(is_silent)[0]
silence_starts = []
silence_ends = []
if len(silent_regions) > 0:
silence_starts.append(silent_regions[0])
for i in range(1, len(silent_regions)):
if silent_regions[i] - silent_regions[i-1] > 1:
silence_ends.append(silent_regions[i-1])
silence_starts.append(silent_regions[i])
silence_ends.append(silent_regions[-1])
long_silences = [(start, end) for start, end in zip(silence_starts, silence_ends)
if (end - start) / sample_rate >= min_silence_duration]
return long_silences
@spaces.GPU()
def generate_speech(text, voice1, voice2, temperature, top_p, repetition_penalty, max_new_tokens, num_hosts, progress=gr.Progress()):
if not text.strip():
return None
try:
progress(0.1, "Processing text...")
paragraphs = text.split('\n\n') # Split by double newline
audio_samples = []
for i, paragraph in enumerate(paragraphs):
if not paragraph.strip():
continue
voice = voice1 if num_hosts == "1" or i % 2 == 0 else voice2
input_ids, attention_mask = process_prompt(paragraph, voice, tokenizer, device)
progress(0.3, f"Generating speech tokens for paragraph {i+1}...")
with torch.no_grad():
generated_ids = model.generate(
input_ids,
attention_mask=attention_mask,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
max_new_tokens=max_new_tokens,
num_return_sequences=1,
eos_token_id=128258,
)
progress(0.6, f"Processing speech tokens for paragraph {i+1}...")
code_list = parse_output(generated_ids)
progress(0.8, f"Converting paragraph {i+1} to audio...")
paragraph_audio = redistribute_codes(code_list, snac_model)
# Add silence detection here
silences = detect_silence(paragraph_audio)
if silences:
# Trim the audio at the last detected silence
paragraph_audio = paragraph_audio[:silences[-1][1]]
audio_samples.append(paragraph_audio)
final_audio = np.concatenate(audio_samples)
# Normalize the audio
final_audio = np.int16(final_audio / np.max(np.abs(final_audio)) * 32767)
return (24000, final_audio)
except Exception as e:
print(f"Error generating speech: {e}")
return None
with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
with gr.Row():
with gr.Column(scale=1):
gemini_api_key = gr.Textbox(label="Gemini API Key", type="password")
prompt = gr.Textbox(
label="Prompt",
placeholder="Enter your text here...",
lines=5,
max_lines=30,
show_label=True,
interactive=True,
container=True
)
uploaded_file = gr.File(label="Upload File", type="binary")
with gr.Column(scale=2):
duration = gr.Slider(minimum=1, maximum=60, value=5, step=1, label="Duration (minutes)")
num_hosts = gr.Radio(["1", "2"], label="Number of Hosts", value="1")
script_output = gr.Textbox(label="Generated Script", lines=10)
generate_script_btn = gr.Button("Generate Podcast Script")
with gr.Column(scale=2):
voice1 = gr.Dropdown(
choices=VOICES,
value="tara",
label="Voice 1",
info="Select the first voice for speech generation"
)
voice2 = gr.Dropdown(
choices=VOICES,
value="zac",
label="Voice 2",
info="Select the second voice for speech generation"
)
with gr.Accordion("Advanced Settings", open=False):
temperature = gr.Slider(
minimum=0.1, maximum=1.5, value=0.6, step=0.05,
label="Temperature",
info="Higher values (0.7-1.0) create more expressive but less stable speech"
)
top_p = gr.Slider(
minimum=0.1, maximum=1.0, value=0.9, step=0.05,
label="Top P",
info="Higher values produce more diverse outputs"
)
repetition_penalty = gr.Slider(
minimum=1.0, maximum=2.0, value=1.2, step=0.1,
label="Repetition Penalty",
info="Higher values discourage repetitive patterns"
)
max_new_tokens = gr.Slider(
minimum=100, maximum=4096, value=2048, step=100,
label="Max Length",
info="Maximum length of generated audio (in tokens)"
)
audio_output = gr.Audio(label="Generated Audio", type="numpy")
with gr.Row():
submit_btn = gr.Button("Generate Audio", variant="primary")
clear_btn = gr.Button("Clear")
generate_script_btn.click(
fn=generate_podcast_script,
inputs=[gemini_api_key, prompt, uploaded_file, duration, num_hosts],
outputs=script_output
)
submit_btn.click(
fn=generate_speech,
inputs=[script_output, voice1, voice2, temperature, top_p, repetition_penalty, max_new_tokens, num_hosts],
outputs=audio_output
)
clear_btn.click(
fn=lambda: (None, None, None),
inputs=[],
outputs=[prompt, script_output, audio_output]
)
if __name__ == "__main__":
demo.queue().launch(share=False, ssr_mode=False) |